Про заболевания ЖКТ

Телематика и компьютерный анализ данных, датчики состояния здоровья и когнитивные технологии, онлайн-запись к врачам и дистанционный прием, медицинские гаджеты и приложения для смартфонов. Таковы направления развития информационных технологий в медицине. По мнению экспертов, опрошенных «Профилем», через 5–10 лет постоянным мониторингом состояния здоровья «будут заниматься большие роботы и маленькие гаджеты».

Медицина и мониторинг состояния здоровья,  с одной стороны, – высокотехнологичная сфера. С другой – российский рынок здравоохранения, особенно государственная его часть, очень осторожен и нетороплив. Однако, несмотря на всю консервативность российского медицинского рынка, базовая информатизация большей части российского здравоохранения уже состоялась: медицинские учреждения подключились к интернету, пациенты могут записываться на прием к врачам онлайн. Теперь же идет расширение и совершенствование уже существующей системы – интеграция информационных систем на региональном и федеральном уровне, развивается телемедицина, поликлиники переходят к использованию единой медицинской карты. В результате, по итогам 2014 года, объем бюджетных затрат на информационные технологии (ИТ) в здравоохранении превысил 6,5 млрд рублей, подсчитали эксперты-аналитики Vademecum.

Big Data и гаджеты

Основной глобальный тренд в области информатизации медицины, в том числе спортивной, – Big Data («большие данные» – обширные массивы глобальных неструктурированных данных), которые обрабатываются при помощи когнитивных технологий. Таким образом, возможно объединение архивов исследований, да и вообще всех накопленных знаний по какой-либо теме в одно глобальное мета-исследование.

«Когнитивные технологии представляют собой совокупность математических методов, алгоритмов и компьютерных технологий, которые позволяют создать умные машины», – объясняет руководитель дирекции «Технософт» компании «Техносерв» Сергей Строганов.

Глубокое обучение – один из наиболее успешных подходов для решения отдельных задач при помощи когнитивных методов, отмечает Строганов. При данном подходе используются глубокие (то есть с большим количеством слоев и сложными зависимостями, способные извлечь мельчайшие абстрактные признаки) нейронные сети различных типов, которые позволяют задействовать широкий класс алгоритмов в зависимости от данных, на которых они обучаются.

Такие технологии могут применяться в медицине, например, для анализа изображений с УЗИ, МРТ, рентгеновских снимков, анализа историй болезней и выдачи рекомендаций на их основе, создания умных протезов, управляемых через нейроинтерфейс (в том числе для восстановления моторных функций).

«Рекомендательные системы, системы контроля и поддержки принятия клинических решений позволят сделать с лечебной работой то же самое, что произошло со многими другими формами интеллектуального труда, – освободить врача от рутины и зубрежки, помогут ему не совершать ошибок по невнимательности. Фактически в профессию врача – очень ответственную и романтическую – приходит «автопилот», – говорит руководитель проекта «Здоровье@Mail.Ru» Евгений Паперный. Правда, отмечает он, последнее актуально прежде всего для тех стран, где время врача стоит очень дорого.

Пример использования когнитивных технологий – приложение Workplace Health, созданное американской кардиологической ассоциацией. Приложение использует возможности системы IBM Watson: она будет осуществлять осмысление аналитических данных и таким образом поможет выработать рекомендации работодателям по поддержанию здоровья своих сотрудников. К примеру, Watson подскажет, как корпорациям правильно создавать и адаптировать медицинские страховые и оздоровительные программы для сотрудников, чтобы это способствовало качественному улучшению их здоровья. Инициатива призвана снизить риск развития сердечно-сосудистых заболеваний, которым на сегодняшний день подвержено более 85 миллионов американцев.

Второй по важности тренд – портативные устройства, в первую очередь интегрированные с телефоном и часами. «Самостоятельные фитнес- и медицинские трекеры существуют, но при всей популярности их распространение не сравнимо с количеством пользователей смартфонов. Поэтому самое интересное – это получать медицинские/фитнес-данные при помощи существующих датчиков», – считает Евгений Паперный. Область датчиков физиологических параметров также называют Quantified Self или Internet of Me.

Так, в базовую поставку обычного iPhone входит не только приложение Health, но и фреймворки ResearchKit и CareKit, позволяющие разрабатывать медицинские приложения, поясняет он. «В результате выяснилось, что для оценки динамики течения болезни Паркинсона не нужно лишних анализов: результат можно получить на основе анализа движений пациента или паттернов дрожания его голосовых связок. Одновременно с новым лекарственным препаратом фармкомпания может выпустить мобильное приложение, которое контролирует его прием или позволяет сообщать о побочных явлениях», – рассуждает он.

В будущем же эта технология приведет к тому, что визит к врачу не будет сопровождаться вопросами типа «чем болели и какие анализы делали?»: врач сможет быстро ознакомиться с показаниями сенсоров, которые уже проанализированы с использованием технологий «больших данных», быстро поставить диагноз и определить требуемое лечение, диету или режим, прогнозирует директор по отраслевым решениям департамента ИТ и ЦОД компании Huawei в России Алексей Шалагинов.

То же относится и к спортивной медицине, причем возможности использования здесь еще шире, отмечает Шалагинов. К примеру, по полученной с датчиков информации страховые компании смогут определять персонализированную стоимость страховки клиента.

«Отстаем на пару лет по технологиям, на 50 – по менеджменту»

Впрочем, эксперты отмечают: российский рынок пока еще очень далек от применения подобных систем. «Российский рынок пока только приближается к осознанию необходимости таких медицинских систем. Например, цифра в 50% использования медицинских сенсоров пациентами в развитых странах в России едва ли составляет единицы процентов, причем в лучшем случае пациент может показать свой смартфон врачу на приеме с информацией о длительности фаз легкого или глубокого сна,  – сетует Алексей Шалагинов. – Верхом информатизации российской медицины пока является высылка результатов анализов на электронную почту пациента».

По оценке Евгения Паперного, Россия отстает от лидеров рынка на пару лет по технологическим и интеллектуальным возможностям, на 10 лет – по уровню образования и академической подготовке и на 50 лет – по качеству менеджмента в отрасли. «У нас упущен момент, когда можно было создать хорошую централизованную медицинскую систему в масштабах всей страны. Каждый регион успел создать свои системы, и теперь объединить их в нечто единое очень сложно. Это уже создает проблемы, причем на всех уровнях», – добавляет Паперный.

К примеру, у существующих в России коммерческих систем для записи в лечебные учреждения, крупнейшие из которых – DocDoc и «ИнфоДоктор», нет полноценной интеграции с медицинскими информационными системами (МИС) лечебно-профилактических учреждений. В результате пациент не может увидеть, когда у того или иного врача есть «окно». Причина – отсутствие адекватной стандартизации интерфейсов и услуг.

«Отсутствие утвержденных стандартов оказания медицинской помощи, обязательных для применения на всей территории страны, препятствует проникновению информационных технологий, – считает руководитель направления цифрового здравоохранения ГК «ФОРС» Александр Антипов.

Кроме того, в России нет единого реестра диагностических процедур, из-за чего в разных клиниках одни и те же анализы и исследования называются по-разному. Например, в одном учреждении пишут: «исследование желудка с введением контрастного вещества», в другом – «рентген желудка с контрастом». Для автоматизированных систем это далеко не синонимы.

Однако, по мнению Антипова, главное не технологии, а менталитет. «В отличие от многих других стран, у нас крайне плохо обстоят дела с профилактикой и предупреждением заболеваний. Отсутствуют государственные программы предупредительной диагностики, скринингов и т. д., – говорит эксперт. – Да и сами граждане относятся к своему здоровью крайне легкомысленно, добровольное медицинское страхование действует преимущественно в корпоративном секторе».

Прогнозы

Рынок электронной медицины очень диверсифицирован, из-за чего сложно дать прогнозы по его развитию в целом, отмечают аналитики. По данным аналитической компании PriceWaterhouseCoopers, в течение следующих 5–7 лет наибольшими темпами будет развиваться диагностический сегмент электронной медицины с годовым ростом 15%, поскольку число пациентов в мире с хроническими заболеваниями, по данным американского центра контроля и предотвращения болезней Center for Decease Control and Prevention, продолжает расти.

Рынок «мобильной медицины» (mHealth) будет расти наиболее быстро, со среднегодовым темпом роста 27% в течение следующих пяти лет, прогнозируют аналитики PWC. По данным американской телемедицинской ассоциации (АТА), число пациентов, использующих mHealth, увеличилось в несколько раз с 2000-го по 2015 год, а число загрузок приложений мобильной медицины составило в Северной Америке 44 млн в 2015 году. «По информации ГНИИ ЦПМ МЗ РФ, более половины российских пользователей смартфонов готовы к использованию технологий мобильного здравоохранения (mHealth), более 10% опрошенных готовы к оплате данного вида услуг, – сообщил Александр Антипов. – По результатам их исследований, использование услуг персонального мониторинга существенно повышает приверженность пациентов назначенному лечению и, как следствие, приводит к снижению числа госпитализаций и повышению качества жизни. Аналогичные результаты были продемонстрированы и в ходе наших пилотных проектов в лечебных учреждениях по использованию платформы дистанционного мониторинга REMSMED для ведения хронических больных».

В медицине основами прорыва являются миниатюризация элементной базы, повышение автономности источников питания, отмечает Сергей Строганов. Этот тренд также будет активно развиваться в ближайшие годы, прогнозирует он.

«Уже сегодня автономные капсулы передвигаются по пищеварительной системе, давая изображение в режиме онлайн. Они же зачастую являются исполнительными механизмами. Кровеносная система осваивается сейчас. Расширение зоны проникновения в сосуды от более крупного сечения к более мелкому – это то, что мы наблюдаем ежедневно», – поясняет он.

«Можно надеяться, что через 5 лет врач будет не только ставить диагноз, выписывать электронный рецепт на медикаменты, но и рекомендовать пациенту наиболее подходящее мобильное приложение, – уверен Антипов. – Врач сможет предлагать услугу персонального мониторинга с использованием носимого медицинского измерительного устройства, не изменяющего привычное качество жизни, но при этом осуществляющего контроль целого набора значимых физиологических параметров организма».

XXI век явно становится веком медицины, оптимистично полагает Евгений Паперный. По его прогнозу, в течение года в России будет принят закон о телемедицине. Через пять лет появится дистанционная доставка лекарств, лицензирование врачей, облегчающее частную практику, а до 20% медицинских услуг будут оказываться дистанционно (в пределе около 60% будет дистанционно). «За рубежом через пять – десять лет любое медицинское решение и назначение будет проверяться и поддерживаться системами искусственного интеллекта, а мониторингом (постоянным!) состояния здоровья будут заниматься большие роботы и маленькие гаджеты», – ожидает Паперный.

Те из нас, кто значительную часть жизни прожил до рубежа веков, привыкли считать наш текущий период времени эдаким отдаленным будущим. Раз уж мы выросли на фильма вроде «Бегущего по лезвию» (в котором действие происходит в 2019 году), нас как-то не очень впечатляет, каким оказывается будущее - во всяком случае с эстетической точки зрения. Да, летающих автомобилей, которые нам постоянно обещали, . Но в медицине, например, происходят настолько впечатляющие прорывы, что мы уже сейчас стоим на пороге практического бессмертия. И чем дальше в будущее, тем удивительнее перспективы этой сферы.


Технологии замены суставов и костей прошли долгий путь за последние десятилетия, части на пластиковой и керамической основе взяли верх над металлическими частями, а новейшее поколение искусственных костей и суставов заходит еще дальше: их будут делать из биоматериалов, чтобы они практически слились с телом.

Это стало возможным, конечно же, благодаря 3D-печати (к этой теме мы будем возвращаться неоднократно). Хирурги главного госпиталя Саутгемптона в Великобритании изобрели технику, с помощью которой имплант бедра пожилого пациента удерживается на месте с помощью «клея», изготовленного из собственных стволовых клеток пациента. Кроме того, профессор Университета Торонто Боб Пиллиар вывел процесс на новый уровень, создав импланты нового поколения, которые на самом деле имитируют кость человека.

Используя процесс, который связывает компонент кости на замену (с применением ультрафиолетового света) в невероятно сложные структуры с чрезвычайной точностью, Пиллиар и его команда создает крошечную сеть каналов и траншеек, по которым перевозятся питательные вещества в самом импланте.

Выращенные костные клетки пациента затем распределяются по этой сети, замыкая кость с имплантом. Со временем компонент искусственной кости растворяется, а выросшие естественным образом клетки и ткани сохраняют форму импланта.

Крошечный кардиостимулятор


С момента имплантации первого кардиостимулятора в 1958 году, эта технология, конечно, значительно улучшилась. Впрочем, после гигантских скачков в развитии в 1970-х, в середине 80-х все как-то застопорилось. Компания Medtronic, которая создала первый кардиостимулятор, работающий на батарейке, выходит на рынок с устройством, которое может произвести такую же революцию в области кардиостимуляторов, как и ее первое устройство. Оно размером с витаминку и не требует хирургического вмешательства.

Эта новая модель вводится через катетер в паху (!), крепится к сердцу маленькими зубцами и поставляет необходимые регулярные электрические импульсы. В то время как обычные кардиостимуляторы, как правило, требуют сложного хирургического вмешательства, создания «кармашка» для устройства рядом с сердцем, крошечная версия существенно упрощает эту процедуру и снижает частоту осложнений на 50%: 96% пациентов не выявляли никаких признаков осложнений.

И хоть Medtronic вполне может быть первым на этом рынке (имея полученное одобрение FDA), другие крупные производители кардиостимуляторов разрабатывают конкурентные устройства и не собираются оставаться за пределами рынка, годовой объем которого составляет 3,6 миллиарда долларов. Medtronic начала разработку крошечных спасителей в 2009 году.

Глазной имплант от Google


Вездесущий провайдер поисковой системы и мировой гегемон Google, похоже, планирует интегрировать технологии в каждый аспект нашей жизни. Впрочем, стоит признать, что вместе с кучей хлама Google выдает на-гора и стоящие идеи. Одно из последних предложений Google может как изменить мир, так и превратить его в кошмар.

Проект, который известен как Google Contact Lens, представляет собой контактную линзу: имплантируясь в глаз, она заменяет естественный хрусталик глаза (который разрушается в этом процессе) и приспосабливается, исправляя плохое зрение. Линза крепится к глазу с помощью того же материала, который используется при производстве мягких контактных линз, и имеет множество практических медицинских применений - вроде считывания кровяного давления пациентов с глаукомой, уровней глюкозы у пациентов с диабетом или беспроводного обновления с учетом ухудшений зрения пациента.

В теории, искусственный глаз Google может полностью восстановить зрение. Конечно, это еще не камера, которая имплантируется прямо вам в глаза, но поговаривают, что к этому все идет. Кроме того, непонятно, когда линза появится на рынке. Но патент был получен, а клинические испытания подтвердили возможность процедуры.


За последние десятилетия достижения в области создания искусственной кожи явили нам существенный прогресс, но два недавних прорыва из совершенно разных областей могут открыть новые направления для исследований. Ученый Роберт Лангер из Массачусетского технологического института разработал «вторую кожу», которую назвал XPL («сшитый полимерный слой»). Невероятно тонкий материал имитирует упругую молодую кожу - этот эффект проявляется мгновенно при создании, но теряет силу примерно через день.

А вот профессор химии Чао Вонг из Калифорнийского университета в Риверсайде работает над еще более футуристическим полимерным материалом: который может самовосстанавливаться от повреждений при комнатной температуре и пронизан крошечными металлическими частицами, которые могут проводить электричество, для лучших измерений. Профессор уверяет, что не пытается создать кожу для супергеров, но признает, что является большим фанатом Росомахи и пытается привнести научную фантастику в настоящий мир.

Что примечательно, некоторые самовосстанавливающиеся материалы уже появились на рынке - например, самовосстанавливающееся покрытие телефона LG Flex, которое Вонг приводит в качестве примера возможного применения таких технологий в будущем. Короче говоря, этот чувак действительно пытается создать супергероев.

Импланты мозга, восстанавливающие двигательные способности


Двадцатичетырехлетний Ян Буркхарт пережил ужасную аварию в возрасте девятнадцати лет, которая парализовала его от груди до пальцев ног. В течение последних двух лет он работал с докторами, которые настраивали и экспериментировали с устройством, имплантированным в его мозг - микрочипом, который считывает электрические импульсы мозга и переводит их в движение. Хоть устройство и далеко от совершенства - его можно использовать только в лаборатории, когда имплант подключен к компьютеру с помощью рукава на руке - оно позволило пациенту свинтить крышку с бутылки и даже поиграть в видеоигру.

Ян признает, что может и не получить выгоду от этих технологий. Он делает это больше чтобы доказать возможность концепции и показать, что его конечности, разъединенные с мозгом, можно заново к нему подключить с помощью посторонних средств.

Впрочем, вполне вероятно, что его помощь хирургии головного мозга и эксперименты, которые проводят по три раза в неделю, окажут огромную поддержку в продвижении этой технологии для будущих поколений. Хотя подобные процедуры использовались для частичного восстановления движений обезьян, это первый пример успешного преодоления нервного разъединения, которое вызывает паралич у человека.

Биоабсорбируемые трансплантаты


Стенты - сетчатые полимерные трубки, которые вставляются хирургическим путем в артерии, препятствуя их блокированию - сущее зло, которое приводит к осложнениям у пациента и демонстрируют умеренную эффективность. Потенциал осложнений, особенно у молодых пациентов, делает результаты недавнего исследования с участием биоабсорбируемых сосудистых трансплантатов весьма перспективными.

Процедура называется эндогенное восстановление тканей. Давайте простыми словами: в случае с молодыми пациентами, которые родились без некоторых необходимых соединений в сердце, врачи смогли создать эти соединения, используя продвинутый материал, который выступает в качестве «лесов», позволяя телу копировать его структуру с помощью органических материалов, а сам имплант впоследствии растворяется. Исследование было ограниченным, с участием всего пятерых молодых пациентов. Но все пятеро выздоровели без каких-либо осложнений.

Хотя эта концепция не нова, новый материал (состоящий из «супрамолекулярных биоабсорбируемых полимеров, изготовленных с использованием проприетарной технологии электропрядения») представляет собой важный шаг вперед. Стенты предыдущего поколения состояли из других полимеров и даже металлических сплавов и выдавали смешанные результаты, что привело к медленному принятию этого метода лечения во всем мире.

Хрящ из биостекла


Еще одна 3D-печатная полимерная конструкция может произвести революцию в методах лечения весьма изнурительных заболеваний. Группа ученых из Имперского колледжа Лондона и Университета Милано-Бикокка создали материал, который назвали «биостеклом»: комбинацию кремний-полимера, имеющую прочные и гибкие свойства хряща.

Биостеклянные импланты напоминают стенты, о которых мы говорили выше, но делаются из совершенно другого материала для совершенно другого применения. Одним из предложенных использований таких имплантов является выстраивание лесов для поощрения естественного выращивания хряща. Также они обладают саморегенерацией и могут восстанавливаться, если связи будут разорваны.

Несмотря на то, что первым испытанием метода будет замена межпозвоночного диска, другая - постоянная - версия импланта находится в стадии разработки для лечения травм колена и других травм в районах, где хрящ уже не отрастить. делает импланты более дешевыми и доступными в производстве и еще более функциональными, чем другие импланты этого типа, которые доступны нам в настоящее время и, как правило, выращиваются в лаборатории.

Самовосстанавливающиеся полимерные мышцы


Чтобы не отставать от коллег, стэнфордский химик Ченг-Хи Ли в поте лица работает над материалом, который может быть строительным блоком для фактической искусственной мышцы, которая может превзойти в качествах наши хилые мускулы. Его соединение - подозрительно органическое соединение кремния, азота, кислорода и углерода - способно растягиваться до 40-кратной своей длины, а после возвращаться в нормальное положение.

Также оно может восстанавливаться от проколов за 72 часа и заново закрепляться после разрывов, вызванных железной «солью» в компоненте. Правда, для этого части мышцы нужно поместить рядом. Куски пока не ползут друг к другу. Пока.

На текущий момент единственным слабым местом этого прототипа является его ограниченной электропроводность: при воздействии электрического поля вещество увеличивается всего на 2%, в то время как настоящие мышцы - на 40%. Это должно быть преодолено в кратчайшие сроки - и тогда Ли, ученые с биостеклянными хрящами и доктор Росомаха смогут собраться вместе и обсудить, что делать дальше.


Этот метод, который изобрел Дорис Тейлор, директор регенеративной медицины в Техасском институте сердца, не сильно отличается от упомянутых выше 3D-печатных биополимеров и прочего. Метод, который доктор Тейлор уже продемонстрировал на животных - и готов продемонстрировать на людях - совершенно фантастический.

Если коротко, сердце животного - свиньи, например - замачивается в химической ванне, которая разрушает и высасывает все клетки, кроме белка. Остается пустой «призрак сердца», который затем можно наполнить собственными стволовыми клетками пациента.

Как только необходимый биологический материал оказывается на месте, сердце подключается к устройству, которое заменяет искусственную систему кровообращения и легкие («биореактор»), пока не станет функционировать как орган и его можно будет пересадить пациенту. Этот метод Тейлор успешно продемонстрировал на крысах и свиньях.

Этот же метод имел успех и с менее сложными органами вроде мочевого пузыря и трахеи. Впрочем, процесс далек от совершенства, но когда его достигнет, очереди пациентов, ожидающих сердца для пересадки, могут прекратиться полностью.

Инъекция мозговой сети


Наконец у нас есть передовая технология, способная быстро, просто и совершенно опутать мозг сетью с помощью одной инъекции. Исследователи из Гарвардского университета разработали электропроводящую полимерную сеть, которая буквально впрыскивается в мозг, где проникает в его закоулки и сливается с веществом мозга.

Пока что сеть, состоящая из 16 электрических элементов, была пересажена в мозг двух мышей на пять недель без иммунного отторжения. Исследователи предсказывают, что крупномасштабное устройство такого плана, состоящее из сотен подобных элементов, может активно контролировать мозг до каждого отдельного нейрона в ближайшем будущем и пригодится при лечении неврологических расстройств вроде болезни Паркинсона и инсульта.

В конце концов, это исследование может привести ученых к более глубокому пониманию высших когнитивных функций, эмоций и других функций мозга, которые в настоящее время остаются непонятными.

В мире найдется не так много людей, способных спокойно перенести визит к врачу с целью получения инъекции. Что ж, кажется, кошмар большинства взрослого и, особенно, детского населения планеты близится к концу. При необходимости получения инъекции вас больше не будут «тыкать» иголкой. Вы будете получать персональных нано-роботов. Именно такой станет медицина будущего.

Современная альтернатива уколам была предложена двумя студентами Университета в Йорке – Атифом Саидом и Захарией Хуссейном. Молодые люди полагают, что инъекции давно изжили себя. Сегодня этот способ ввода лекарственных средств небезопасен. Это и вдохновило юных исследователей предложить вариант доставки лекарств на базе использования нано-роботов. Проект получил название «Nanject».

Основой новой технологии будет нано-пластырь. Его поверхность будет состоять из нано-роботов. Проникновение нано-роботов в организм человека будет осуществляться через кожу, а их транспортировка в организме – по кровеносной системе. Так нано-роботы смогут достигать больных тканей.

Атиф Саид и Захария Хуссейн планируют производить пластыри в двух вариациях

  1. Первая из них будет отличаться наличием мизерной долей лекарственных средств, предназначенной для транспортирования к органам, проблемы с которыми испытывает пациент.
  2. Предназначение второй будет определяться нано-роботами ликвидаторами, способными находить в организме патологические клетки и осуществлять нагрев до температуры, приводящей к их гибели. После этого температура нано-роботов будет падать, и их выведение из организма будет осуществляться естественным путем.

Исследователи полагают, что нано-пластырь имеет огромные перспективы. По их словам, в ближайшем будущем именно с его помощью люди будут получать всевозможные лекарства, витамины, вакцины и БАДЫ.

Необходимость лечить зубы будет устранена

Британские специалисты в области стоматологии занялись разработкой технологии, позволяющей выращивать зубы непосредственно во рту пациентов. Это настоящая медицина будущего. Методика заключает в себя два этапа восстановления утраченного зуба.

  • Во-первых, сюда входит изготовление зачатка зуба. Для этого используются эпителиальные клетки десны пациента, а также стволовые клетки эмбрионов мышей.
  • Некоторое время спустя от эпителиальных клеток исходит специальный импульс, который стимулирует превращение эмбриона в некоторый тип зуба.
  • После формирования зуба в пробирке его перемещают в среду дальнейшего нахождения – полость рта пациента. Здесь реализуется фаза имплантирования, позволяющая зубу вырасти до нужных размеров.

Предварительные тестирования методики доказывают ее успешность, поэтому повседневное использование такого выращивания зубов возможно уже в ближайшем будущем.



Зубы станут детекторами вирусов

Специалисты из Принстонского университета разработали чип, который помещается на зубную эмаль и сигнализирует об изменениях в состоянии организма. В составе чипа имеется золото, шелк и графен (сверхтонкая пленка углерода) в качестве соединительного материала.

Функционирование устройства возможно даже без батареи, так как радиосигнал передается с помощью антенной катушки. Хотя чип и кажется сложной конструкцией, его крепление к эмали зуба осуществляется при помощи обычной воды.

На сегодняшний день изобретение еще не подходит для целевого использования. Оно имеет достаточно большие размеры, а также не защищено от повреждений во время чистки зубов или еды. Однако инженеры упорно твердят об огромном потенциале данного устройства в контексте мониторинга здоровья человека. По мнению разработчиков, это первый шаг к медицине будущего.

Чип испытали на зубе коровы с добровольцами, согласившимися дышать на устройство. Прибор мгновенно передавал новую информацию на мониторы. Интересно, что в дальнейшем чип будет определять наличие вредоносных бактерий и вирусов не только путем анализа выдыхаемого воздуха, но и посредством разбора компонентов слюны.

Солдаты США будут обладать супер-зрением

Американская фирма «Innovega» обратилась к правительству Соединенных Штатов Америки с просьбой рассмотреть все преимущества своей новой разработки. Это технология, позволяющая в значительной мере улучшить визуальное восприятие объектов окружающей среды.

По словам руководителя компании Стива Уиллея, ее использование в контактных линзах позволит достичь расширения углового зрения человека, а также одновременной фокусировки взгляда на нескольких объектах. Такая модификация зрения позволит превосходить противников во время ведения боевых действий. Первым заказчиком партии устройств стал Пентагон.

Сообщается, что устройства для улучшения качества зрения будут использоваться не только в военно-промышленном комплексе. Стив Уиллей заявляет о скором поступлении линз в свободную продажу, что даст возможность распространять технологию среди широких масс населения.



Тем не менее, офтальмологи предупреждают об опасности использования новой разработки. Специалисты полагают, что эти линзы оказывают негативный эффект на глаза и остроту зрения, ведь они снижают контрастность изображений, воспринимаемых человеком.

Синтетическую кровь можно тестировать на людях

Первая в мире лицензия на исследование синтетической крови с ее тестированием на людях была получена группой ученых, работающей при Шотландском Центре Регенеративной Медицины (Эдинбург). При изготовлении синтетической крови исследователи брали за основу стволовые клетки, выделенные из организма взрослых доноров.



Это качественно отличает полученную кровь от прежних вариантов, базой изготовления которых служили эмбрионы. Если испытания нового продукта пройдут успешно, он сможет нивелировать проблему недостатка доноров и крови, а также избавить человечество от проблем инфицирования при переливании некачественной крови.

Кроме тестирования синтетической крови, исследователи собираются провести испытания медикаментов, изготовленных с использованием стволовых клеток. На это уже имеется соответствующее разрешение. Предполагается, что данные лекарственные средства будут эффективны при лечении пациентов после инсульта и пациентов, которые страдают от ряда заболевания типа рака, диабета или болезни Паркинсона. Такие лекарства станут основой медицины будущего.

Перемещение предметов будет реализовываться за счет силы мысли

Группа инженеров из компании ATR, базирующейся в городе Киото, Япония, разработала систему, гарантирующую выполнение различных действий при помощи мыслей. Эксперимент получил название Network Brain Machine Interface.



В нём было успешно реализовано ряд задач, в том числе управление руками исключительно с помощью силы мысли или включение и выключение света и телевизора. Мысли даже позволили менять направление движения на инвалидной коляске!

Потрясающие результаты стали возможны благодаря шлему, оборудованному множеством сенсоров:

  • Устройство фиксирует самые незначительные изменения в токе крови и малейшие колебания импульсов, исходящих от головного мозга.
  • Эта информация посылается в аналитический центр, который расположен в инвалидной коляске.
  • После анализа запроса происходит его адресация определенному устройству, оборудованному сенсором считывания.

На сегодняшний день промежуток между поступлением запроса и выполнением команды составляет 6-12 секунд. Однако разработчики твердо намерены достичь результата в 1 секунду уже через 3 года. К тому же, они планируют приблизить точность распознавания команд к показателю 80%.

Ожидается, что компания выпустит устройство на рынок к 2020 году. Специалисты полагают, что аппарат существенно облегчит жизнь людей с ограниченными возможностями и людей старшего возраста. Для инвалидов медицина будущего может вернуть полноценную жизнь.

Парень с бионической рукой

Первого и единственного великобританского подростка с бионической рукой зовут Патрик Кейн.

Когда парню было 9 месяцев, менингококковая инфекция вызвала сепсис и необходимость ампутировать правую голень и пальцы на правой руке. В 1 год Патрику достались протезы, которые прослужили ему целых 15 лет, а на 16-летие родители сделали тинэйджеру супер-технологичный подарок в виде бионической руки от шотландской компании Touch Bionics.



Управление бионической рукой осуществляется при помощи смартфона. В комплект поставки включено специальное приложение для операционной системы iOS, которое позволяет владельцу осуществлять контроль над движением своей конечности. В него входят обучающие материалы, ознакомление с которыми позволяет использовать устройство с наибольшей эффективностью.

На запястье протеза находятся датчики, которые фиксируют электрические импульсы при сокращении мышц. Пользователь может выбрать любой из 24 типов захвата. Бионическая рука отличается сверхчувствительностью, позволяющей взять листок бумаги без его наименьшего сминания. В то же время, искусственная рука способна поднимать груз до 90 кг.

Оценивая функциональность изобретения, Патрик Кейн не скрывает своего восторга. Он заявляет, что бионическая рука позволяет проделывать каждодневные операции с куда более высоким уровнем комфорта, чем это было с протезами. Это настоящая медицина будущего. Черная модель бионической конечности, которую предпочел подросток, стоит в пределах 38-122 тысяч долларов зависимо от ее размеров.

Японцы научились делать кожу прозрачной

Ученые из Японии долгое время пытались найти реагент, который бы делал кожу живых организмов прозрачной. Целью этих трудов было облегчение процесса изучения работы внутренних органов. Кажется, умопомрачительное открытие все-таки состоялось.

Пока полученная «сыворотка прозрачности» была испытана лишь на эмбрионах мышей. Сейчас специалисты работают над повышением уровня безопасности сильного химического вещества. Это позволит провести испытания реагента на животных и на людях. Препарат получил кодовое название Scale А2.



Кровеносные сосуды будут выращивать в лабораторных условиях

Группа авантюрных исследователей, работающих при Йельском университете и Университете Дюка (Западная Каролина), открыла новую страницу в истории медицины. Ученые создали сеть лабораторий, специализацией которых является выращивание кровеносных сосудов с их дальнейшим применением в разных операциях.

До этого момента при оперировании использовались вены и сосуды самого пациента. Данный способ имел значительные ограничения, ведь подобное донорство могло быть невозможным в силу отсутствия у пациента подходящих сосудов.

Основой нового метода стало отнюдь не клонирование, обсуждаемое человечеством с повышенным интересом.

  • Суть технологии состоит в выделении мышечной ткани трупов, которая помещается в биореактор.
  • Здесь развитие ткани проходит в специально разработанных контейнерах, которые обеспечивают ее восстановление.
  • Помимо того, эти резервуары способствуют повышению силы и эластичности ткани, которая превращается в кровеносную систему за счет стягивания сети крохотных клеток.



Главной составляющей технологии называют биореактор. Первое использование данного устройства датируется еще 1999 годом. Тогда с его помощью пытались создать сердечную ткань, что происходило в условиях невесомости. О существовании прибора было известно лишь единицам, ведь его собирались применять не только для выращивания человеческих тканей, но и для клонирования продуктов питания.

Новая технология будущего должна решить проблему с донорством органов и очередями на трансплантацию. Разработчики заявляют, что ее внедрение в современный технологический прогресс будет осуществлено уже в ближайшее время.

Пока проект находится на стадии разработки, но финансирование должно поступить сразу после получения позитивных результатов. Обязательным участником проекта станет НАСА, ведь заводы по выращиванию органов должны непременно находится в космосе, чтобы нивелировать воздействие земного притяжения на рост клеток.

Открыт эликсир молодости

Исследователи из Гарварда придумали, как можно омолодить старые органы. Ожидается, что данная медицинская технология сделает жизнь человека более продолжительной. Ее суть сводится к получению одного-единственного укола.

Методика была разработана на основе наблюдений за генами старости.

Общий принцип старения состоит в утрате организмом возможности формировать здоровые клетки, которые бы делились и производили новые клетки. Это связано с тем, что теломеры (концы нитей ДНК) становятся все короче. Достигая критической длины, они провоцируют старение тела.

Рональд ДеФино стал куратором следующего эксперимента. В лабораторных условиях были созданы мыши, не обладающие способностью производить теломеры. Оказалось, что при ухудшении состояния клеток животные сразу же умирали. Опыт был повторен с дополнением в виде ввода мышам энзимов через шприц. В результате процесс старения грызунов пошел вспять, и их клетки стали омолаживаться.

Возможность провести подобные модификации с людьми поможет получить лекарства от преждевременного старения. Правда, перед учеными еще стоит немало вопросов, включающих моральную сторону модификации ДНК, биологический аспект влияния технологии на потомков и потенциальное перенаселение планеты вечно молодыми людьми.



Английский врач возвращает умерших к жизни

Сэма Парниа называют врачом от Бога. Этому реаниматологу удается возвращать людей к жизни даже после клинической смерти продолжительностью три часа! Свое первое место работы специалист нашел в Англии, а сейчас трудится в США. В Медицинском центре университета Стоуни-Брук (Нью-Йорк) Сэм смог поднять показатель выживших после клинической смерти с показателя 16% до показателя 30%. По словам специалиста, это еще не предел.

Сэм Парниа убеждает окружающих в том, что он не волшебник, а результаты его труда – это всего лишь дань науке и здравому смыслу. Он глубоко уверен, что современная медицина продолжает эксплуатировать устаревшие методы и технологии. Реаниматолог изобрел свою технологию воскрешения людей, которую назвал «эффектом Лазаря». Она позволяет спасти жизнь, по крайней мере, 40 тысячам пациентов в год.

Врач не скрывает нюансов своего метода от других специалистов медицинской сферы или простых людей. Данная технология стала предметом повествования в его собственной книге. Тем не менее, другие специалисты не спешат пользоваться полученными знаниями. Еще бы, ведь метод требует немалых стараний и большого количества времени для каждого пациента.

  • Базой «эффекта Лазаря» служит информация о системе остановки апоптоз, которая определяет запрограммированную гибель клеток.
  • После того, как у человека наступает клиническая смерть, его немедленно охлаждают.
  • Его кровь прогоняют через специальный прибор для очистки крови – ЕСМО. Таким образом, внутренняя среда организма очищается от углекислого газа и насыщается кислородом.



С помощью метода Сэму Парниа удалось спасти футболиста Фабриса Мумамба, который пробыл в состоянии клинической смерти несколько часов, и девушку из Японии, состояние мнимой смерти которой продлилось 3 часа.

Ещё совсем недавно «технические» возможности врача ограничивались фонендоскопом, приобретённым опытом и интуицией. Сегодня медицина – это царство современных технологий, позволяющих проникать в неведомые ранее глубины человеческой плоти – до молекул и атомов, откуда, как оказалось, и берут своё начало большинство человеческих недугов.

Второе дыхание антибиотиков

Когда-то антибиотики спасли миллионы жизней от опаснейших инфекций. Но тут случилось непредвиденное. Всему виной стала доступность антибиотиков, помноженная на бесконтрольное их применение, что привело к адаптации инфекций к своим «заклятым врагам».

Сегодня учёные заняты созданием антибиотиков нового поколения. Один из них – , разработанный учёными Северо-Восточного университета США на основе бактерии, обнаруженной в почве. Её достоинства – в губительном воздействии на многие виды болезнетворных микробов и абсолютной безвредности для организма.

«Умный» всевидящий протез

Специалистами Мичиганского технологического университета разработан прототип голеностопного с системой микропроцессорного управления, в которую входит видеокамера, сканирующая пространство спереди и сзади. Её основная функция – определить профиль поверхности и передать видеоинформацию в «бортовой» компьютер. Тот, в свою очередь, тщательно проанализировав её, сформирует оптимальный угол и жёсткость лодыжке, что характерно для «живой» ноги.

Модель виртуального человека

Идея по её созданию принадлежит учёным Нижегородского госуниверситета. Цель проекта – смоделировать виртуальный человеческий клон со всеми мельчайшими «подробностями», характерными для живого организма, но только в цифровом виде. Для этого потребовалось суперкомпьютер «Лобачевский» производительностью 600 терафлоп.

Теперь появилась возможность составить компьютерную модель практически любого человека и отрабатывать на ней различные варианты лечения.

Электронная кожа контролирует мозг

Этот кусочек золотистой ткани не больше почтовой марки на самом деле изящное электронное носимое устройство . Его создали Джон Роджерс и его коллеги-учёные из университета Иллинойса.

Внутри находятся миниатюрные датчики, отслеживающие процессы, протекающие в организме. При размещении на голове устройство может отслеживать электронные волны, предшествующие различным мозговым расстройствам, в частности, эпилепсии.

Приложение, предсказывающее болезни

Его автор – российская студентка Софья Кореневская. предупредит пользователей о возникновении опасных заболеваний органов пищеварения, сердца и нервной системы на основе биомедицинских показателей, зафиксированных установленным на теле программно-техническим комплексом.

Нанобинты заживляют раны

Понятие «незаживающая рана» связано с присутствием в ней патогенных микроорганизмов, устойчивых к антибиотикам. Учёные из Института физики прочности и материаловедения (Томск) разработали , взаимодействующие с микроорганизмами совершенно по новому принципу, что сводит на нет возможность заражения и обеспечивает быстрое заживление раны.

Слуховой аппарат, подключённый к черепу

Новое поколение слуховых аппаратов предполагает передачу звуковых колебаний через кости черепа. Известный британский лор-хирург Рэй Джейдип разработал устройство T-OBCD, для людей с односторонней глухотой. С помощью несложной операции титановый имплантат закрепляется на кости черепа за ухом. Передача звука осуществляется двумя магнитами.

Вместо скальпеля нанопузырьки

Как правило, при лечении злокачественных опухолей печени приходится прибегать к хирургическому вмешательству. Исследователи университета штата Иллинойс разработали гораздо более щадящую и эффективную методику борьбы с этим страшным заболеванием. Вместо скальпеля опухоль уничтожают , заполненные противораковым препаратом. Проникнув в опухоль, они в нужное время лопаются, разрушая её изнутри.

Медицинские технологии – ровесники медицины

Целители прошлого быстро уяснили, что для успешной борьбы с недугами необходимо знание анатомии, химии, механики, что повреждённый или утраченный орган можно заменить искусственным, а для того, чтобы сделать операцию, требуются специальные инструменты.

Среди артефактов древности встречаются описания кровопускания, трепанации черепа и других сложных операций. В Древнем Риме была хорошо развита стоматология и создавались уникальные для того времени хирургические инструменты.


На ноге одной из древнеегипетских мумий археологи обнаружили великолепный протез большого пальца, а в гробнице Тутанхамона – «предков» современных солнечных очков.

Никогда бы не возникла и современная фармакология, не будь целителей-травников, тысячи лет собиравших, изучавших целебные свойства растений и создававших на их основе удивительные лекарства.

22.12.2015

Здоровье человека — это наукоемкая индустрия, которая развивается с невероятной скоростью. Как ее изменят новые технологии и кто будет востребован на рынке труда в течение 20 следующих лет? «Учёба.ру» ставит диагноз будущему медицины.

За последние 100 лет наука спасения человеческих жизней сделала огромный шаг вперед, проникнув в тайны человеческого тела и психики. Она научилась бороться с инфекционными заболеваниям, разработала пластическую хирургию, освоила новые средства хирургического вмешательства, шла нога в ногу с последними достижениями миниатюризации. Мы больше не болеем оспой, забыли, что такое чума, знаем, как пересаживать сердце. Все это привело к тому, что в течение XX века средняя продолжительность жизни на планете выросла с 35 до 65 лет.

Медицина продвинулась очень далеко в решении самых разных проблем, связанных со здоровьем человека, но, увы, не решила их все. Сегодня перед ней стоят вызовы не меньшего масштаба чем век назад. До сих пор не покорен рак, неизвестные ранее вирусы возникают с завидной регулярностью, антибиотики теряют свою силу, новые привычки и образ жизни приносят новые болезни. При этом мы находимся в эпицентре генетической революции, усиленно изучаем структуру мозга, надеемся на большие данные и роботов, ждем прорывов в борьбе со старением. Тот, кто сегодня планирует связать свою жизнь с медициной, должен повнимательнее присмотреться к передовому краю ее развития и понять, как она может измениться к 2035 году.

Робот-хирург Da Vinci

Основным поставщиком новых технологий и профессий во всех областях человеческого труда сегодня являются информационные технологии. Врачи не исключение. Медицинские учреждения поголовно переходят с аналогового учета на цифровой, осваивают системы компьютерного анализа и прогнозирования. Тектонические сдвиги в системе здравоохранения в обозримом будущем связаны с возрастающей мощностью вычислений и работой с большими данным. В 2015 году компания Google объявила о запуске первого квантового компьютера D-Wave. Каким он будет через 20 лет, можно только гадать, но совершенно точно - очень и очень быстрыми. Таким скоростям и объемам понадобятся специалисты с продвинутым знанием IT, которые в состоянии управлять огромными массивами данных и заниматься их поддержкой - в будущем IT-медики и аналитики будут востребованы в медицине не меньше, чем медсестры или стоматологи.

Рука об руку с суперкомпьютерами идут системы автоматизации и робототехнические комплексы. Роботы-хирурги Da Vinci, выполняющие операция различной сложности, главным образом гистерэктомии и простатэктомии, уже присутствуют в более чем 2000 медицинских учреждений, 25 из которых находятся в России. Эти машины еще не полностью автономны, и вряд ли станут такими в скором времени. Они нуждаются в квалифицированных инженерах и операторах с навыками программирования - профессиях, которые точно будут необходимы и через 20 лет. Хирург и изобретатель из MIT Катерина Мор рассказывает в своей лекции на TED о том, что роботы могут дать врачами настоящие суперспособности, - а ведь их использование в медицине еще даже не начиналось.

Сетевые технологии и компьютеризация отрасли выводит на первый план персонализированные медицинские сервисы. Развитие трикодеров, аппаратов, способных ставить диагнозы автономно от врача, мобильных приложений и нательных датчиков-гаджетов только добавит масла в огонь. Известный генетик и исследователь цифровой медицины Эрик Тополь называет этот процесс «эмансипацией пациента» и считает, что информация и быстрая экспертиза вскоре будет не только доступна каждому без посещения кабинета доктора, но и позволит предсказывать и предотвращать большинство серьезных заболеваний на лету.

Здравоохранение выйдет за порог поликлиник и больниц, разгрузив их от мелких процедур и ненужной бюрократии. Так сформируется огромный рынок персонализированной терапии. Личные онлайн-врачи существуют и сегодня, но в течение ближайших десятилетий именно они будут доминировать в профессиональной среде. Ни один заинтересованный в здоровом образе жизни человек не откажется от мгновенного доступа к экспертному мнению, особенно, если для этого существует удобная платформа, а средства диагностики находятся под рукой. Работа врача будет схожа с работой персонального тренера и психоаналитика. Чтобы построить успешную карьеру в таком мире, понадобится квалификации, которые сегодня преподаются не в медицинских, а маркетинговых институтах - клиенториентированность и умение работать с людьми.


Дмитрий ШАМЕНКОВ,

врач, основатель «Системы управления здоровьем»,

эксперт по разработке и внедрению новых технологий в медицине,

член Экспертной коллегии Фонда развития Инновационного центра

«Сколково» по биомедицинским проектам.

«В вопросах здравоохранения не стоит отделять Россию от всего мира. Мы имеем те же самые проблемы, что и граждане европейских стран, стран Азии или Америки. Новые вызовы возникают очень быстро, однако на подходе новые решения. Думаю, что в ближайшем будущем стоит уделить внимание интеграции медицины и других наук. В первую очередь, биотехнологий, информационных технологий и когнитивных технологий. Появление новых материалов, роботехнических устройств, глубокого машинного обучения, генной инженерии, развитие социальных сетей и искусственного интеллекта полностью и непредсказуемым образом меняют нас самих и наш подход к медицине.

Уверенно можно сказать, что медицина будущего - это информационная медицина, ориентированная на раннюю профилактику и высокотехнологичное протезирование. Я думаю, что доктор будущего - это сеть саморегулируемых квантовых компьютеров, глубоко изучивших геном человечества, наши поведенческие характеристики, а также все научные исследования, когда-либо проведенные нами. Главная проблема, которую останется решить человеку в будущем - это научиться жить свободным от диктата такой системы. Чтобы успеть это сделать, учиться нужно уже сегодня. Мы живем в самое удивительное время за всю историю человечества».

Процесс персонализации медицины будет подхвачен прорывами в области генетики. В начале XXI века был завершен международный проект «Геном человека» по расшифровке ДНК. Исследования обошлись в 3 млрд долларов, а уже через 15 лет стоимость персонального секвенирования генома упала ниже 1000 долларов. Через 20 лет эта процедура будет проводиться в момент рождения, и каждый будет знать особенности своего генома, как группу крови. На рынке труда появятся консультанты-генетики. Они помогут в интерпретации результатов, проанализируют общее состояние здоровья и отправят пациента к нужному специалисту.

Схема работы CRISPR/Cas9

Еще интереснее, как новые технологии в области генетических исследований затронут здоровье человека напрямую. Например, наделавшая много шума система CRISPR/Cas9 - метод монтирования ДНК, который уже сегодня позволяет манипулировать генами напрямую. На данный момент технология выступает подспорьем в борьбе с тяжелыми болезнями и открывает фантастические перспективы в области перестройки ДНК эмбрионов. И хотя до полного понимания влияния механизмов работы человеческого генома на здоровье пока далеко - требуются дополнительные исследования - генетика кардинально меняет лицо медицины. «Это больше не научная фантастика», - так доктор Джордж Дэйли из Гарвардской медицинской школы характеризует происходящие изменения. В течение 20 лет CRISPR/Cas9 станет тем более обычным делом, требующим квалифицированных специалистов.

Генетические манипуляции и некоторые другие новые технологии, вроде пересадки лица, нейробиологии и изготовления искусственных органов, потребуют от общества поисков новых норм и правил регулирования медицинской отрасли. Для этого понадобятся эксперты с кардинально новым багажом знаний - медицинских, философских, социальных и политических. Сегодня это направление известно как «биоэтика» и уже появилось в программах ведущих университетов. Востребованность специалистов, обеспечивающих этические рамки работы с новыми технологиями, будет расти с каждым новым научным прорывом. Клонирование, трансплантология, моделирование ДНК, эвтаназия и другие чувствительные вопросы будут решаться под пристальным надзором специалистов в области биоэтики.

Кроме генетики, наука предоставит медицинской отрасли ряд специалистов в области биоимиджинга, таргетированой терапии, нейробиологии, оптогенетики, регенеративной медицины и нанотехнологий. Эти научные области сегодня вызывают наибольший интерес не только у экспертов, но и у бизнес-сообщества. Предприниматель и член стратегического комитета ИНВИТРО Сергей Шуплецов отмечает, что «в ближайшие 15 лет многие механические технологии будут вытеснены биотехнологиями. В первую очередь, это коснется здоровья. К примеру, будут изобретены препараты, которые нельзя назвать в полной мере лекарственными. Они будут контролировать и стимулировать естественные защитные силы организма».

Особенно хорошо в России представлены технологии 3D-биопринтинга. Так, российские специалисты одними из первых напечаталио рганный конструкт щитовидной железы мыши с помощью российского же биопринтера Fabion. Биопечать - это процесс воссоздания с копии органа на основе живых клеток организма. «Волшебство» происходит в специальном многофункциональном устройстве, чей масштаб совсем скоро дорастет до человеческих нужд. Лидеры индустрии в России - первая отечественная частная лаборатория, работающая в области трехмерной органной биопечати, 3D Bioprinting Solutions. Успешные опыты сегодня свидетельствуют о том, что через 20 лет в этом поле не будет недостатка работы.


Чтобы расширить понимание процессов, в результате которых происходит поражение клеток, и получить новые инструменты противодействия тяжелым заболеваниям, важно развитие новых техник лабораторных наблюдений, наподобие биоимиджинга. Российские специалисты преуспели и в этой области. Представители ИПФ РАН делают одни из самых качественных установок для флуоресцентного биоимджинга, которые играют большую роль в онкологических исследованиях и фармакологии. Другие актуальные разработки в области биотехнологий касаются наночипов, стволовых клеток и нейроинтерфесов. Специалисты в этих областях сегодня ценятся на вес золота и не потеряют свой статус до 2035 года.

Развитие современной медицины и общее повышение уровня жизни привели к тому, что демографическая структура населения сильно поменялась. В развитых и развивающихся странах появляется всё больше пожилых людей. По данным Росстата, к 2030 году треть населения России будет пенсионного возраста. Вероятно, это не предел, учитывая развитие совершенно новой области знаний - life science, которая ставит своей целью увеличить продолжительность жизни или вовсе победить старение. Группа филантропов во главе в Юрием Мильнером и Марком Цукербергом ежегодно вручает премию Breakthrough Prize и 3 млн долларов лучшим исследователям именно в этом направлении. Идея, что человек может, в среднем, жить больше 100 лет, находит всё больше приверженцев среди серьезных ученых.

Изменение демографической ситуации окажет заметное влияние на здравоохранение будущего. Во-первых, это приведет к появлению нового типа медицинских работников - специалистов по достойной старости, чьи способности и знания будут нарасхват в обществе, где доминируют люди старше 60 лет. Во-вторых, наука о продлении жизни сможет серьезно изменить структуру отрасли, став буфером всех новых технологий, которые будут необходимы стареющему населению для поддержания высокого качества жизни: от пластической хирургии до биопечати новых органов взамен обветшавших. Спрос на качественные медицинские услуги будет пропорциоанльно расти.

Медицину ждут большие, но вполне прогнозируемые перемены. Следующие 20 лет станут эпохой персонализации, компьютеризации и биотехнологизации отрасли. Это не значит, что индустрия испытает серьезный кризис. Совсем наоборот. Новые технологии скорее приоткрывают перед человечеством золотую эру здравоохранения. Всё больше болезней поддаются лечению. Затраты на здоровье растут с каждым годом. Инновации расширяют рынок медицинских услуг, добавляя россыпь новых рабочих мест, а процессы автоматизации пока не угрожают даже самому низкоквалифицированному персоналу. В будущем медицина останется при лучших своих качествах - будет интересной, благородной и выгодной профессией, и главное - на любой вкус.

Врачи будущего

IT-медик Специалист по биоэтике Хирург-оператор
Специалист в области IT, баз данных и медицинского программного обеспечения. Изучает и решает спорные медицинские вопросы с точки зрения закона и морали. Оператор автоматизированных хирургических систем.
Генетический консультант ДНК-хирург Онлайн-терапевт
Занимается проведением генетического анализа и интерпретацией его результатов. Специалист в области монтирования ДНК и манипуляции с генами. Специалист широкого профиля, оказывающий персональные медицинские услуги в удаленном режиме.
Эксперт в области life science Специалист по трансляционной медицине Клинический геронтолог
Специалист, занимающийся вопросами максимизации здорового образа жизни и ее продления. Способствует переносу фундаментальных исследований в биомедицине в общую медицинскую практику. Специалист по здоровой старости.
Тканевый инженер
Профессионал в области биопечати.


Точки входа в медицину будущего в России

Российское медицинское образование сегодня продолжается от шести до 18 лет. Сразу после вузовской «шестилетки» выпускники могут стать только терапевтами или педиатрами. Постдипломное образование для получения специальности займет еще от двух до пяти лет. Дольше всего учатся те, кто хочет стать доктором наук: в этом случае продолжительность образования будет сравнима с продолжительностью жизни человека, достигшего совершеннолетия.

Учёба.ру

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: