Про заболевания ЖКТ

Эта регуляция обеспечивается сложным механизмом, включающим чувствительное, центральное и эфферентное звенья.

5.2.1. Чувствительное звено. Рецепторы сосудов - ангиоцепторы - по своей функции подразделяются на барорецепторы (прессорецепторы), реагирующие на изменение артериального давления, и хеморецепторы, чувствительные к изменению химического состава крови. Их наибольшие скопления нахо­дятся в главных рефлексогенных зонах: аортальной, синокаротидной, в сосудах легочного круга кровообращения. Раздражителем барорецепторов является не давление как таковое, а скорость и степень растяжения стенки сосуда пульсовыми или нарастающими колебаниями кровяного давления. Барорецепторные рефлексогенные зоны могут быть прессорными и депрессорными. Так, в случае падения давления интенсивность импульсации от барорецепторов уменьшается, что сопровождается рефлекторным повышением тонуса мышц сосудистой стенки. Соответственно повышается периферическое сопротивление сосудов и вследствие этого нормализуется арте­риальное давление. Импульсы, идущие от депрессорных зон оказываю противоположный эффект.

Хеморецепторы реагируют на изменение концентрации в крови О 2 , СО 2 , Н + , некоторых неорганических и органических веществ. Гипоксия, гиперкапния, которые сопровождаются изменением химического состава крови, приводят к возникновению сердечно-сосудистых и дыхательных рефлексов, которые направлены на нормализацию состава крови и поддержание гомеостаза. Каротидные хеморецепторы в большей степени участвуют в регуляции легочной вентиляции, аортальные - преимущественно в регуляции деятельности сердечно-сосудистой системы. Хеморецепторы находятся также в сосудах сердца, селезенки, почек, костного мозга, органов пищеварения и др. Их физиологическая роль состоит в восприятии концентрации питательных веществ, гормонов, осмотического давления крови и передаче сигнала об их изменении в ЦНС.

Механо- и хеморецепторы расположены также в стенках венозного русла. Так, повышение давления в венах брюшной полости неизменно сопровождается рефлекторным учащением и углублением дыхания, усилением сердечного кровотока и присасывающего действия грудной клетки.



Рефлексы, возникающие с рецептивных зон сердечно-сосудистой системы и определяющие регуляцию взаимоотношений в пределах именно этой системы, носят название собственных (системных) рефлексов кровообращения. При увеличении силы раздражения в ответную реакцию помимо сердечно-сосудистой системы вовлекается дыхание. Это будет уже сопряженный рефлекс. Пороги раздражения для собственных рефлексов всегда ниже, чем для сопряженных. Существование сопряженный рефлексов дает возможность системе кровообращения быстро и адекватно приспосабливаться к меняющимся условиям внутренней среды организма.

5.2.2. Центральное звено принято называть сосудодвигательным (вазомоторным) центром. Струк­туры, относящиеся к вазомоторному центру, локализуются в спинном, продол­говатом мозгу, гипоталамусе, коре больших полушарий.

Спинальный уровень регуляции. Нервные клетки, аксоны которых образуют сосудосуживающие волокна, располагаются в боковых рогах грудных и первых поясничных сегментов спинного мозга.

Бульбарный уровень регуляции. Сосудодвигательный центр продолговатого мозга является основным центром поддержания тонуса сосудов и рефлекторной регуляции кровяного давления.

Сосудодвигательный центр подразделяется на депрессорную, прессорную и кардиоингибирующую зоны. Это деление довольно условно, так как из-за взаимного перекрытия зон определить границы невозможно.

Депрессорная зона способствует снижению артери­ального давления путем уменьшения активности симпатических сосудосужива­ющих волокон, вызывая тем самым расширение сосудов и падение периферичес­кого сопротивления, а также путем ослабления симпатической стимуляции сердца, т. е. уменьшения сердечного выброса. Депрессорная зона является местом пере­ключения импульсов, поступающих сюда с барорецепторов рефлексогенных зон, которые вызывают центральное торможение тонических разрядов вазоконстрикторов. Кроме того, депрессорная область оказывает рефлекторное угнете­ние прессорной зоны и активирует парасимпатические механизмы.

Прессорная зона оказывает прямо противоположное действие, повышая артериальное давление через увеличение периферического сопротивления сосу­дов и сердечного выброса. Взаимодействие децрессорных и прессорных струк­тур сосудодвйгательного центра носит сложный синерго-антагонистический характер.

Кардиоингибирующее действие третьей зоны опосредуется волокнами блуж­дающего нерва, идущими к сердцу. Его активность приводит к уменьшению сердечного выброса и тем самым объединяется с активностью депрессорной зоны в снижении артериального давления.

Состояние тонического возбуждения сосудодвигательного центра и, соответственно, уровень общего артериального давления регулируются импульсами, идущими от сосудистых рефлексогенных зон. Кроме того, этот центр входит в состав ретикулярной формации продолговатого мозга, откуда также получает многочисленные коллатеральные возбуждения от всех специфически проводящих путей.

Влияния сосудодвигательного центра осуществляются через спинной мозг, ядра черепных нервов (VII, IX и X пар), периферические образования автономной нервной системы.

Сосудодвигательный центр продолговатого мозга в реакциях целого организма выступает в тесном взаимодействии с гипоталамусом, мозжечком, базальными ядрами, корой головного мозга. Он осуществляет срочные ответы кровеносной системы, связанные с усиленной мышеч­ной работой, гипоксией, гиперкапнией, ацидозом.

Гипоталамический уровень регуляции играет важную роль в осуществлении адаптивных реакций кровообращения. Интегративные центры гипоталамуса оказывают нисходящее влияние на сердечно-сосудистый центр продолговатого мозга, обеспечивая дифференциро­ванный фазный и тонический контроль. В гипоталамусе, так же как в бульварном сосудодвигательном центре, раз­личают депрессорные и прессорные зоны. В целом это дает основание рассматривать гипоталамический уровень как надстройку, выступающую в роли своеобразного дублера основного бульбарного центра.

Корковый уровень регуляции н аиболее подробно изучен с помощью методов условных рефлексов. Так, сравнительно легко удается выра­ботать сосудистую реакцию на ранее индифферентный раздражитель, вызывая при этом ощущение жары, холода, боли и т. д.

Определенные зоны коры головного мозга, как и гипоталамус, оказывают нисходящее влияние на основной центр продолговатого мозга. Эти влияния формируются в результате сопоставления информации, которая поступила в высшие отделы нервной системы от различных рецептивных зон, с предшеству­ющим опытом организма. Они обеспечивают реализацию сердечно-сосудистого компонента эмоций, мотиваций, поведенческих реакций.


5.2.3. Эфферентное звено. Эфферентная регуляция кровообращения реализуется через один и тот же аппарат, в основе которого лежат нервный и эндокринный механизмы.

Нервный механизм осуществляется при участии 3-х компонентов.

1) преганглионарных симпатических нейронов, тела которых расположены в передних рогах груд­ного и поясничного отделов спинного мозга, а также постганглионарных нейронов, лежащих в симпатических ганглиях.

2) преганглионарные парасимпатические нейроны ядра блуждаю­щего нерва, находящегося в продолговатом мозгу, и ядра тазового нерва, располо­женного в крестцовом отделе спинного мозга, и их постганлионарные нейроны.

3) для полых висцеральных органов это эфферентные нейроны метасимпатической нервной системы, локализующиеся в интрамуральных гангли­ях их стенок. Они представляют собой общий конечный путь всех эфферентных и центральных влияний, которые через адренергическое, холинергическое и другие звенья регуляции действуют на сердце и сосуды.

Иннервации подлежат практически все сосуды, за исключением капилляров. Иннервация вен соответствует иннервации артерий, хотя в целом плотность иннервации вен значительно меньше. Нервные окончания эфферентных воло­кон точно прослежены до прекапиллярных сфинктеров, где они оканчиваются на гладкомышечных клетках. Сфинктеры способны активно отвечать на прохо­дящие импульсы.

Основным механизмом нервной регуляции капилляровявляется эфферент­ная иннервация бессинаптического типа посредством свободной диффузии ме­диаторов в направлении стенки сосуда.

Гуморальная регуляция.

Главную роль в гормональной регуляции сосудис­того русла играют гормоны мозгового и коркового слоев надпочечников, задней доли гипофиза и юкстагломерулярного аппарата почек.

Адреналин н а артерии и артериолы кожи, органов пищеварения, почек и легких он оказывает сосудосуживающее влияние; на сосуды скелетных мышц, гладкой» мускулатуры бронхов - расши­ряющее, содействуя тем самым перераспределению крови в организме. При физическом напряжении, эмоциональном возбуждении он способствует увели­чению кровотока через скелетные мышцы, мозг, сердце.

Норадреналин, ка к и адреналин, выделяется в постганглионарных сим­патических окончаниях и оказывает влияние на состояние сосудов.

Влияние адреналина и норадреналина на сосудистую стенку определяется существованием разных типов адренорецепторов - α и β, представляющих собой участки гладкомышечных клеток с особой химической чувствительностью. В сосудах обычно имеются оба типа рецепторов. Взаимодействие медиатора с α-адренорецептором ведет к сокращению стенки сосуда, с β-рецептором - к расслаблению.

Альдостерон вырабатывается в корковом слое надпочечников. Альдостерон обладает необычайно высокой способностью усиливать обратное всасывание натрия в почках, слюнных железах, пищеварительной системе, изменяя таким образом чувствительность стенок сосудов к влиянию адреналина и норадреналина.

Вазопрессин вызывает сужение артерий и артериол органов брюшной полости и легких. Однако, как и под влиянием адреналина, сосуды мозга и сердца реагируют на этот гормон расширением, что способствует улучшению питания и мозговой ткани, и сердечной мышцы.

Ангиотензин II - это продукт ферментативного расщепления ангиотензиногена или ангиотензина I под влиянием ренина . Он обладает мощным вазоконстрикторным (сосудосуживающим) действием, значительно превосходящим по силе норадреналин, но в отличие от последнего не вызывает выброса крови из депо. Это объясняется наличием чувствительных к ангиотензину рецепторов только в прекапиллярных артериолах, которые расположены в организме неравномерно. Поэтому его действие на сосуды различных областей не одинаково. Системный прессорный эффект сопровождается уменьшением кровотока в почках, кишке, коже и увеличением его в мозгу, сердце и надпочечниках. Изменения кровотока в мышце незначительны. Большие дозы ангиотензина могут вызвать сужение сосудов сердца и мозга. Ренин и ангиотензин представляют собой ренин-ангиотензиновую систему.

Помимо прямого действия на сосудистую систему ангиотензин оказывает влияние и опосредованно через автономную нервную систему и эндокринные железы. Он увеличивает секрецию альдостерона, адреналина и норадреналина, усиливает вазоконстрикторные симпатические эффекты.

Способностью расширять сосуды обладают биологически активные вещества и местные гормоны, такие как гистамин, серотонин, брадикинин, простагландины.

В нервной и эндокринной регуляции различают гемодинамические меха­низмы кратковременного действия, промежуточные и длительного действия.

К механизмам кратковременного действия относят циркуляторные реак­ции нервного происхождения - барорецепторные, хеморецепторные, рефлекс на ишемию ЦНС. Их развитие происходит в течение нескольких секунд. Про­межуточные (по времени) механизмы охватывают изменения транскапилляр­ного обмена, расслабление напряженной стенки сосуда, реакцию ренин-ангиотензиновой системы. Для включения этих механизмов требуются минуты, а для максимального развития - часы. Регуляторные механизмы длительного действия влияют на соотношение между внутрисосудистым объемом крови я емкостью сосудов. Это осуществляется посредством транскапиллярного обмена жидкости. В этом процессе участвуют почечная регуляция объема жидкости, вазопрессин и альдостерон.

  • Алгоритм лечения внутрибольничной остановки кровообращения
  • Анатомия и гистология сердца. Круги кровообращения. Физиологические свойства сердечной мышцы. Фазовый анализ одиночного цикла сердечной деятельности
  • Эта регуляция обеспечивается сложным механизмом, включающим чувствительное (афферентное) , центральное и эфферентное звенья.

    5.2.1. Чувствительное звено. Рецепторы сосудов - ангиоцепторы - по своей функции подразделяются на барорецепторы (прессорецепторы), реагирующие на изменение артериального давления, и хеморецепторы , чувствительные к изменению химического состава крови. Их наибольшие скопления нахо­дятся в главных рефлексогенных зонах: аортальной, синокаротидной, в сосудах легочного круга кровообращения.

    Раздражителем барорецепторов является не давление как таковое, а скорость и степень растяжения стенки сосуда пульсовыми или нарастающими колебаниями кровяного давления.

    Хеморецепторы реагируют на изменение концентрации в крови О 2 , СО 2 , Н + , некоторых неорганических и органических веществ.

    Рефлексы, возникающие с рецептивных зон сердечно-сосудистой системы и определяющие регуляцию взаимоотношений в пределах именно этой системы, носят название собственных (системных) рефлексов кровообращения. При увеличении силы раздражения в ответную реакцию помимо сердечно-сосудистой системы вовлекается дыхание . Это будет уже сопряженный рефлекс. Существование сопряженный рефлексов дает возможность системе кровообращения быстро и адекватно приспосабливаться к меняющимся условиям внутренней среды организма.

    5.2.2. Центральное звено принято называть сосудодвигательным (вазомоторным) центром. Струк­туры, относящиеся к вазомоторному центру, локализуются в спинном, продол­говатом мозгу, гипоталамусе, коре больших полушарий.

    Спинальный уровень регуляции. Нервные клетки, аксоны которых образуют сосудосуживающие волокна, располагаются в боковых рогах грудных и первых поясничных сегментов спинного мозга и являются ядрами симпатической и парасимпатической системы.

    Бульбарный уровень регуляции. Сосудодвигательный центр продолговатого мозга является основным центром поддержания тонуса сосудов и рефлекторной регуляции кровяного давления.

    Сосудодвигательный центр подразделяется на депрессорную, прессорную и кардиоингибирующую зоны. Это деление довольно условно, так как из-за взаимного перекрытия зон определить границы невозможно.

    Депрессорная зона способствует снижению артери­ального давления путем уменьшения активности симпатических сосудосужива­ющих волокон, вызывая тем самым расширение сосудов и падение периферичес­кого сопротивления, а также путем ослабления симпатической стимуляции сердца, т. е. уменьшения сердечного выброса.

    Прессорная зона оказывает прямо противоположное действие, повышая артериальное давление через увеличение периферического сопротивления сосу­дов и сердечного выброса. Взаимодействие децрессорных и прессорных струк­тур сосудодвигательного центра носит сложный синерго-антагонистический характер.

    Кардиоингибирующее действие третьей зоны опосредуется волокнами блуж­дающего нерва, идущими к сердцу. Его активность приводит к уменьшению сердечного выброса и тем самым объединяется с активностью депрессорной зоны в снижении артериального давления.

    Состояние тонического возбуждения сосудодвигательного центра и, соответственно, уровень общего артериального давления регулируются импульсами, идущими от сосудистых рефлексогенных зон. Кроме того, этот центр входит в состав ретикулярной формации продолговатого мозга, откуда также получает многочисленные коллатеральные возбуждения от всех специфически проводящих путей.

    Гипоталамический уровень регуляции играет важную роль в осуществлении адаптивных реакций кровообращения. Интегративные центры гипоталамуса оказывают нисходящее влияние на сердечно-сосудистый центр продолговатого мозга, обеспечивая его контроль. В гипоталамусе, так же как в бульварном сосудодвигательном центре, раз­личают депрессорные и прессорные зоны.

    Корковый уровень регуляции н аиболее подробно изучен с помощью методов условных рефлексов. Так, сравнительно легко удается выра­ботать сосудистую реакцию на ранее индифферентный раздражитель, вызывая при этом ощущение жары, холода, боли и т. д.

    Определенные зоны коры головного мозга, как и гипоталамус, оказывают нисходящее влияние на основной центр продолговатого мозга. Эти влияния формируются в результате сопоставления информации, которая поступила в высшие отделы нервной системы от различных рецептивных зон, с предшеству­ющим опытом организма. Они обеспечивают реализацию сердечно-сосудистого компонента эмоций, мотиваций, поведенческих реакций.

    5.2.3. Эфферентное звено. Эфферентная регуляция кровообращения реализуется через гладкомышечные элементы стенки кровеносного сосуда, которые постоянно находятся в состоянии умеренного напряжения – сосудистого тонуса. Существует три механизма регуляции сосудистого тонуса:

    1. ауторегуляция

    2. нервная регуляция

    3. гуморальная регуляция

    Ауторегуляция обеспечивает изменение тонуса гладкомышечных клеток под влиянием местного возбуждения. Миогенная регуляция связана с изменением состояния гладкомышечных клеток сосудов в зависимости от степени их растяжения – эффект Остроумова-Бейлиса. Гладкомышечные клетки стенки сосудов отвечают сокращением на растяжение и расслаблением – на понижение давления в сосудах. Значение: поддержание на постоянном уровне объема крови, поступающей к органу (наиболее выражен механизм в почках, печени, легких, головном мозге).

    Нервная регуляция сосудистого тонуса осуществляется вегетативной нервной системой, которая оказывает сосудосуживающее и сосудорасширяющее действие.

    Симпатические нервы являются вазоконстрикторами (сужают сосуды) для сосудов кожи, слизистых оболочек, желудочно-кишечного тракта и вазодилататорами (расширяют сосуды) для сосудов головного мозга, легких, сердца и работающих мышц. Парасимпатический отдел нервной системы оказывает на сосуды расширяющее действие.

    Иннервации подлежат практически все сосуды, за исключением капилляров. Иннервация вен соответствует иннервации артерий, хотя в целом плотность иннервации вен значительно меньше.

    Гуморальная регуляция осуществляется веществами системного и местного действия. К веществам системного действия относятся ионы кальция, калия, натрия, гормоны:

    Ионы кальция вызывают сужение сосудов, ионы калия оказывают расширяющее действие.

    Способностью расширять сосуды обладают биологически активные вещества и местные гормоны, такие как гистамин , серотонин , брадикинин , простагландины .

    Вазопрессин – повышает тонус гладкомышечных клеток артериол, вызывая сужение сосудов;

    Адреналин на артерии и артериолы кожи, органов пищеварения, почек и легких он оказывает сосудосуживающее влияние ; на сосуды скелетных мышц, гладкой» мускулатуры бронхов - расши­ряющее , содействуя тем самым перераспределению крови в организме. При физическом напряжении, эмоциональном возбуждении он способствует увели­чению кровотока через скелетные мышцы, мозг, сердце. Влияние адреналина и норадреналина на сосудистую стенку определяется существованием разных типов адренорецепторов - α и β, представляющих собой участки гладкомышечных клеток с особой химической чувствительностью. В сосудах обычно имеются оба типа рецепторов. Взаимодействие медиаторов с α-адренорецептором ведет к сокращению стенки сосуда, с β-рецептором - к расслаблению.

    Предсердный натрийуретический пептид - м ощный вазодилятатор (расширяет кровеносные сосуды, снижая артериальное давление). Снижает реабсорбцию (обратное всасывание) натрия и воды в почках (снижает объем воды в сосудистом русле). Выделяется эндокринными клетками предсердий при их чрезмерном растяжении.

    Тироксин – стимулирует энергетические процессы и вызывает сужение кровеносных сосудов;

    Альдостерон вырабатывается в корковом слое надпочечников. Альдостерон обладает необычайно высокой способностью усиливать обратное всасывание натрия в почках, слюнных железах, пищеварительной системе, изменяя таким образом чувствительность стенок сосудов к влиянию адреналина и норадреналина.

    Вазопрессин вызывает сужение артерий и артериол органов брюшной полости и легких. Однако, как и под влиянием адреналина, сосуды мозга и сердца реагируют на этот гормон расширением, что способствует улучшению питания и мозговой ткани, и сердечной мышцы.

    Ангиотензин II - это продукт ферментативного расщепления ангиотензиногена или ангиотензина I под влиянием ренина . Он обладает мощным вазоконстрикторным (сосудосуживающим) действием, значительно превосходящим по силе норадреналин, но в отличие от последнего не вызывает выброса крови из депо. Ренин и ангиотензин представляют собой ренин-ангиотензиновую систему.

    В нервной и эндокринной регуляции различают гемодинамические меха­низмы кратковременного действия, промежуточные и длительного действия. К механизмам кратковременного действия относят циркуляторные реак­ции нервного происхождения - барорецепторные, хеморецепторные, рефлекс на ишемию ЦНС. Их развитие происходит в течение нескольких секунд. Про­межуточные (по времени) механизмы охватывают изменения транскапилляр­ного обмена, расслабление напряженной стенки сосуда, реакцию ренин-ангиотензиновой системы. Для включения этих механизмов требуются минуты, а для максимального развития - часы. Регуляторные механизмы длительного действия влияют на соотношение между внутрисосудистым объемом крови я емкостью сосудов. Это осуществляется посредством транскапиллярного обмена жидкости. В этом процессе участвуют почечная регуляция объема жидкости, вазопрессин и альдостерон.

    Дата добавления: 2014-05-22 | Просмотры: 899 | Нарушение авторских прав


    | | | | | | 7 | | | | |

    Кроме нервной регуляции тонуса сосудов, контролируемой симпатической нервной системой, в организме человека существует второй путь регуляции этих же сосудов - гуморальный (жидкостный), который контролируют химические вещества самой крови, протекающей в сосудах.

    «Регуляция просвета сосудов и кровоснабжения органов осуществляется рефлекторным и гуморальным путем.

    …Гуморальная регуляция сосудистого тонуса. Гуморальная регуляция осуществляется химическими веществами (гормоны, продукты метаболизма и другие), циркулирующими в крови или образующимися в тканях при раздражении. Эти биологически активные вещества либо суживают, либо расширяют сосуды». (А. В. Логинов, 1983).

    Это прямая подсказка для поиска причин повышения артериального давления крови в патологиях гуморальной регуляции тонуса сосудов. Необходимо исследовать биологически активные вещества, которые либо суживают (они могут это делать чрезмерно), либо расширяют (они могут это делать недостаточно активно) сосуды.

    Однако если бы вопрос заключался только в исследовании патологических отклонений в гуморальной регуляции тонуса сосудов и исследовании их влияния на АД крови, то мы могли бы сразу прекратить эти наши исследования и заявить, что вообще никакие реальные отклонения тонуса сосудов практически не виновны в увеличении максимального давления крови и развитии гипертонической болезни. Это мы уже знаем твердо!

    Но биологически активные вещества крови очень давно ошибочно считаются в медицине виновниками гипертонической болезни. Это ошибочное утверждение настойчиво пропагандируется, поэтому надо набраться терпения и внимательно исследовать все биологически активные вещества крови, которые расширяют и суживают сосуды.

    Начнем с предварительного краткого рассмотрения этих веществ, с накопления базовых сведений о них.

    К сосудосуживающим химическим веществам крови относят: адреналин, норадреналин, вазопрессин, ангиотензин II, серотонин.

    Адреналин - гормон, который образуется в мозговом слое надпочечников. Норадреналин - медиатор, передатчик возбуждения в адренергических синапсах, выделяемый окончаниями постганглионарных симпатических волокон. Образуется и в мозговом слое надпочечников.

    Адреналин и норадреналин (катехоламины) «вызывают эффект такого же характера, какой возникает при возбуждении симпатической нервной системы, то есть обладают симпатомиметическими (сходными с симпатическими) свойствами. Содержание их в крови ничтожно, но активность чрезвычайно высока.

    …Значение катехоламинов вытекает из способности их быстро и интенсивно оказывать влияние на процессы метаболизма, увеличивать работоспособность сердца и скелетной мускулатуры, обеспечивать перераспределение крови для оптимального снабжения тканей энергетическими ресурсами, усиливать возбуждение центральной нервной системы».

    (Г. Н. Кассиль. «Внутренняя среда организма». 1983).

    Усиление поступления в кровь адреналина и норадреналина связано со стрессами (в том числе со стрессорными реакциями в составе заболеваний), физическими нагрузками.

    Адреналин и норадреналин вызывают сужение сосудов кожи, органов брюшной полости, легких.

    В малых дозах адреналин расширяет сосуды сердца, головного мозга и работающих скелетных мышц, повышает тонус сердечной мышцы, учащает сердечные сокращения.

    Увеличение поступления в кровь адреналина и норадреналина при стрессах, физических нагрузках обеспечивает увеличение кровотока в мышцах, сердце, мозге.

    «Адреналин из всех гормонов обладает наиболее резким сосудистым действием. На артерии и артериолы кожи, органов пищеварения, почек и легких он оказывает сосудосуживающее влияние; на сосуды скелетных мышц, гладкой мускулатуры бронхов - расширяющее, содействуя тем самым перераспределению крови в организме.

    …Влияние адреналина и норадреналина на сосудистую иaстенку определяется существованием разных типов адренорецепторов - представляющих собой участки гладкомышечных клеток с особойb химической чувствительностью. В сосудах обычно имеются оба типа этих -адренорецептором ведет кaрецепторов. Взаимодействие медиатора с -рецептором - к расслаблению. Норадреналинbсокращению стенки сосуда, с - иa-адренорецепторами, адреналин - с aвзаимодействует в основном с -рецепторами. По мнению У. Кеннона, адреналин - это «аварийный гормон»,b осуществляющий в трудных, иногда экстремальных условиях мобилизацию функций и сил организма.

    …В кишке также имеются оба вида адренорецепторов; однако воздействие на те и другие вызывает торможение активности гладкой мышцы.

    Адренорецепторов, и здесьa…В сердце и бронхах нет -адренорецепторы, что ведет кbнорадреналин и адреналин возбуждают только усилению сердечных сокращений и расширению бронхов.

    …Альдостерон - другое необходимое звено регуляции кровообращения железами надпочечников. Он вырабатывается в их корковом слое. Альдостерон обладает необычайно высокой способностью усиливать обратное всасывание натрия в почках, слюнных железах, пищеварительной системе, изменяя таким образом чувствительность стенок сосудов к влиянию адреналина и норадреналина».

    Вазопрессин (антидиуретический гормон) выделяется в кровь задней долей гипофиза. Он вызывает сужение артериол и капилляров всех органов и участвует в регуляции диуреза (по А. В. Логинову, 1983). По А. Д. Ноздрачеву и соавт. (1991): вазопрессин «вызывает сужение артерий и артериол органов брюшной полости и легких. Однако, как и под влиянием адреналина, сосуды мозга и сердца реагируют на этот гормон расширением, что способствует улучшению питания и мозговой ткани, и сердечной мышцы».

    Ангиотензин II. В почках, в их так называемом юкстагломерулярном аппарате (комплексе), вырабатывается протеолитический фермент ренин. В свою очередь, в печени образуется сывороточный -глобулин ангиотензиноген. Ренин поступает в кровь иb(плазменный) катализирует процесс превращения ангиотензиногена в неактивный декапептид (10 аминокислот) ангиотензин I. Фермент пептидаза, локализующийся в мембранах, катализирует отщепление дипептида (2 аминокислоты) от ангиотензина I и превращает его в биологически активный октапеитид (8 аминокислот) ангиотеизин II, повышающий артериальное давление в результате сужения кровеносных сосудов (по данным «Энциклопедического словаря медицинских терминов», 1982–1984).

    Ангиотензин II обладает мощным вазоконстрикторным (сосудосуживающим) действием, значительно превосходящим по силе норадреналин. Очень важно, что ангиотензин II, в отличие от норадреналина, «не вызывает выброса крови из депо. Это объясняется наличием чувствительных к ангиотензину рецепторов только в прекапиллярных артериолах. которые расположены в организме неравномерно. Поэтому его действие на сосуды различных областей не одинаково. Системный прессорный эффект сопровождается уменьшением кровотока в почках, кишечнике и коже и увеличением его в мозгу, сердце и надпочечниках. Изменения кровотока в мышце незначительны. Большие дозы ангиотензина могут вызвать сужение сосудов сердца и мозга. Считают, что ренин и ангиотензин представляют собой так называемую ренин-ангиотензиновую систему».

    (А. Д. Ноздрачев и соавт., 1991).

    Серотонин, открытый в середине XX столетия, по самому названию означает вещество из сыворотки крови, способное повышать кровяное давление. Серотонин образуется главным образом в слизистой оболочке кишечника. Он освобождается кровяными пластинками и благодаря своему сосудосуживающему действию способствует остановке кровотечения.

    С сосудосуживающими веществами крови мы познакомились. Теперь рассмотрим сосудорасширяющие химические вещества крови. К ним относят ацетилхолин, гистамин, брадикинин, простагландины.

    Ацетилхолин образуется в окончаниях парасимпатических нервов. Он расширяет периферические кровеносные сосуды, замедляет сердечные сокращения, понижает артериальное давление. Ацетилхолин не стоек и крайне быстро разрушается ферментом ацетилхолинэстеразой. Поэтому принято считать, что действие ацетилхолина в условиях организма местное, ограниченное тем участком, где он образуется.

    «Но теперь… установлено, что ацетилхолин поступает из органов и тканей в кровь и принимает активное участие в гуморальной регуляции функций. Его влияние на клетки сходно с действием парасимпатических нервов».

    (Г. Н. Кассиль. 1983).

    Гистамин образуется во многих органах и тканях (в печени, почках, поджелудочной железе и особенно в кишечнике). Он постоянно содержится главным образом в тучных клетках соединительной ткани и базофильных гранулоцитах (лейкоцитах) крови.

    Гистамин расширяет сосуды, в том числе капилляры, повышает проницаемость стенок капилляров с образованием отеков, вызывает усиление секреции желудочного сока. Действием гистамина объясняется реакция покраснения кожи. При значительном образовании гистамина может наступить падение артериального давления из-за скопления большого количества крови в расширенных капиллярах. Как правило, без участия гистамина не возникают аллергические явления (гистамин освобождается из базофильных гранулоцитов).

    Брадикинин образуется в плазме крови, но особенно много его в подчелюстной и поджелудочной железах. Являясь активным полипептидом, он расширяет сосуды кожи, скелетных мышц, мозговые и коронарные сосуды, приводит к понижению артериального давления.

    «Простагландины представляют большую группу биологически активных веществ. Они являются производными ненасыщенных жирных кислот. Простагландины образуются практически во всех органах и тканях, однако термин для их обозначения связан с предстательной железой, из которой они были впервые выделены. Биологическое действие простагландинов чрезвычайно многообразно. Один из их эффектов проявляется в выраженном действии на тонус гладкой мускулатуры сосудов, причем влияние разных типов простагландинов часто диаметрально противоположно. Одни простагландины сокращают стенки кровеносных сосудов и повышают артериальное давление, другие - оказывают сосудорасширяющее действие, сопровождающееся гипотензивным эффектом».

    (А. Д. Ноздрачев и соавт., 1991).

    Исследуя влияние биологически активных веществ крови, необходимо учитывать, что в организме существуют так называемые депо крови, являющиеся одновременно депо некоторых из исследуемых веществ.

    А. В. Логинов (1983):

    «Кровяное депо. В состоянии покоя у человека до 40-80% всей массы крови находится в кровяных депо: селезенке, печени, подкожном сосудистом сплетении и легких. В селезенке содержится около 500 мл крови, которая может быть полностью выключена из циркуляции. Кровь, находящаяся в сосудах печени и сосудистого сплетения кожи, циркулирует в 10-20 раз медленнее, чем в других сосудах. Поэтому в этих органах кровь задерживается и они являются как бы резервами крови.

    Кровяное депо регулирует количество циркулирующей крови. При необходимости увеличить объем циркулирующей крови последняя поступает в кровяное русло из селезенки благодаря ее сокращению. Такое сокращение происходит рефлекторно в тех случаях, когда наступает обеднение кислородом крови, например, при кровопотерях, пониженном атмосферном давлении, отравлении окисью углерода, во время интенсивной мышечной работы и в других аналогичных случаях. Поступление крови в относительно увеличенном количестве из печени в кровяное русло происходит благодаря более ускоренному движению крови в ней, что также осуществляется рефлекторным путем».

    А. Д. Ноздрачев и соавт (1991):

    «Кровяные депо. У млекопитающих в селезенке может застаиваться до 20% общего количества крови, то есть выключаться из общего кровообращения.

    …В синусах скапливается более густая кровь, содержащая до 20% эритроцитов всей крови организма, что имеет определенное биологическое значение.

    …Печень также способна депонировать и концентрировать значительные количества крови, не выключая ее, в отличие от селезенки, из общего кровотока. Механизм депонирования основан на сокращении диффузного сфинктера печеночных вен и синусов при меняющемся притоке крови или за счет увеличенного притока крови при неменяющемся оттоке. Опорожнение депо осуществляется рефлекторно. На быстрый выход крови влияет адреналин. Он вызывает сужение брыжеечных артерий и соответственно снижение притока крови в печени. Одновременно он расслабляет мускулатуру сфинктеров и сокращает стенки синусов. Выброс крови из печени зависит от колебания давления в системе полой вены и брюшной полости. Этому способствуют также интенсивность дыхательных движений и сокращение мышц брюшного пресса».

    В связи с тем, что мы исследуем возможные регуляционные влияния, повышающие артериальное давление крови, необходимо учитывать важное общее положение о времени действия регуляционных механизмов:

    «В нервной и эндокринной регуляции различают гемодинамические механизмы кратковременного действия, промежуточные и длительного действия.

    К механизмам кратковременного действия относят циркуляторные реакции нервного происхождения - барорецепторные, хеморецепторные, рефлекс на ишемию ЦНС. Их развитие происходит в течение нескольких секунд. Промежуточные (по времени) механизмы охватывают изменения транскапиллярного обмена, расслабление напряженной стенки сосуда, реакцию ренин-ангиотензиновой системы. Для включения этих механизмов требуются минуты, а для максимального развития - часы. Регуляторные механизмы длительного действия влияют на соотношение между внутрисосудистым объемом крови и емкостью сосудов. Это осуществляется посредством транскапиллярного обмена жидкости. В этом процессе участвуют почечная регуляция объема жидкости, вазопрессин и альдостерон».

    (А. Д. Ноздрачев и соавт., 1991).

    Можно считать, что мы накопили необходимые базовые сведения для исследования гуморальной регуляции тонуса сосудов и артериального давления крови. Пора приступать к разумному использованию накопленных базовых сведений, которые мы будем пополнять по мере необходимости.

    Напомним, что в этой главе мы ищем повышающие тонус сосудов и артериальное давление крови гуморальные компоненты гипертонической болезни. Это химические вещества крови. Из них ангиотензин II считается в медицине особо гипертонически опасным веществом, которое одновременно с очень сильным химическим повышением тонуса сосудов еще и сохраняет объем циркулирующей в сосудах крови. Это последнее соображение имеет важнейшее значение, и в специальной литературе всегда подчеркивается гипертоническая опасность ангиотензина II.

    Первым шагом в направлении нашего поиска будет исключение из рассмотрения всех сосудорасширяющих химических веществ крови. Считается, что они не принимают участия в увеличении тонуса сосудов и артериального давления крови. В повышении АД крови не замечены ни ацетилхолин, ни гистамин, ни брадикинин, ни простагландины. В этом единодушны все исследователи. В поле нашего зрения остаются сосудосуживающие химические вещества крови: адреналин, норадреналин, вазопрессин, ангиотензин II, серотонин.

    Но и серотонин, несмотря на свое название, не обладает искомыми свойствами и мы исключаем его из рассмотрения. Мнение и на этот счет единодушное. Следующую главу мы посвятим адреналину и норадреналину.

    Три основных механизма:

    1. Нейромышечный включает афферентное и эфферентное звенья.

    Афферентное звено нейромышечного механизма "собирает" информацию от капилляров, артерий и вен и передает ее в спинальные и(или) бульбарные сосудо-двигательные центры. Координированная реакция реализуется через эфферентное звено, в составе которого находятся моноаминергические и холинергические аксоны. Бульбарные сосудодвигательные центры обеспечивают необходимый приток крови в магистральные артерии. Весь нервный аппарат заключен в адвентиции.

    Функциональное значение ангиорецепторов заключается в информации о степени наполнения сосудов, уровне давления, скорости кровотока и поддержании сердечно-сосудистого гомеостаза. Рецепторы растяжения, или механорецепторы, локализуются главным образом и местах высокого давления, например в аортальной рефлексогенной зоне, которую иннервируют депрессорные нервы, каротидное тельце, где заканчиваются афферентные волокна синусного нерва.

    Эфферентное звено сосудистой системы всех артерий, вен и капилляров имеет обилие холин- и адренергических аксонов. Формирование холин- и адренергических сплетений заканчивается к 25-30-летнему возрасту, когда сплетения достигают самого высокого уровня развития и устанавливается наибольшая активность нейромедиаторов. У человека в возрасте до 50 лет сохраняются относительная стабильность числа волокон и уровень активности медиаторов, а в более старшем возрасте оба показателя снижаются, причем индивидуально. Все эффекторные волокна находятся в пределах адвентиции, а их окончания со специфическими синаптическими везикулами располагаются на расстоянии 80-2000 нм от внешнего слоя миоцитов средней оболочки. Аксоны имеют плотные везикулы с норадреналином, светлые пузырьки, заполненные ацетилхолином, сближенные на расстояние 20-50 нм.

    2. Нейропаракринный регулирует деятельность кровеносных сосудов посредством эндокринных клеток (хромаффиноцит, тучная клетка), синтезирующих пептиды (вазопрессин, ВИП, вещество Р и др.), биогенные моноамины и продукты их окисления (дофамин, гистамин, серотонин, адренолютин, хинон). Импульсы, идущие с преганглионарных холинергических аксонов, стимулируют уровень функциональной активности сосудистых эндокриноцитов. Постганглионарные моноаминергические аксоны через адекилатциклазную систему и специфические протеинкиназы регулируют синтетическую активность эндокриноцитов. Кроме нервной системы, в регуляции сосудистой подвижности заметную роль играет внутренняя оболочка артерий и вен.

    3. Эндотелиозависимый (интимальный) регуляции сосудистого тонуса решающее значение имеет эндотелий, синтезирующий факторы, предотвращающие коагуляцию крови (антитромбин III, протеин С, активатор плазминогена и др.), активаторы системы свертывания крови (тромбопластин, тромбоксан А2) и вещества, обладающие вазомоторной активностью. Среди вазоактивных веществ, секретируемых эндотелиоцитами, идентифицированы простагландины, пурины, брадикинин, вещество Р, простациклин, серотонин, гистамин и др. В расслаблении (релаксации) сосудов принимают участие продукты обмена арахидоновой кислоты, эндогенный нитрат - N0. Стимулы, вызывающие реакцию эндотелия, могут быть как химическими, так и механическими. При функциональной целостности эндотелиального пласта биологически активные вещества (ацетилхолин, норадреиалин, простагландины, пурины) расширяют просвет сосуда, передавая эффект с эндотелиоцита на миоцит с помощью окиси азота.

    Нервная регуляция. Главный центр регуляции сердечной деятельности находится в продолговатом мозге. Возбуждение симпатических нервов увеличивает силу сокращений сердца (положительное инотропное действие), частоту (положительное хронотропное действие), возбудимость (положительное батмотропное действие) и проводимость (положительное дромотропное действие) сердечной мышцы. Трофический или усиливающий нерв И.П. Павлова (веточка симпатического нерва) оказывает только положительное инотропное действие. Блуждающий нерв (парасимпатический) оказывает на сердце отрицательные ино-, хроно-, батмо- и дромотропное действия. Сердце находится под тонусом блуждающего нерва (постоянное тормозное влияние на сердце).

    Гемодинамические механизмы регуляции: гетерометрическая регуляция (закон Франка-Старлинга) – чем сильнее растянуты мышечные волокна во время диастолы, тем больше приток крови к сердцу, тем больше сила сердечных сокращений. Гомеометрическая регуляция (не зависит от исходной длины мышечных волокон) – «лестница» Боудича (увеличение частоты сокращений сердца при постоянной силе раздражителя приводит к увеличению силы сердечных сокращений), феномен Анрепа (чем выше давление в аорте и легочной артерии, тем больше сила сердечных сокращений).

    Рефлекторная регуляция работы сердца: внутрисердечные периферические рефлексы (за счет функционирования внутриорганной нервной системы: все звенья рефлекторной дуги находятся в сердце), экстракардиальные механизмы: рефлексы с сердца на сердце (зона Бейнбриджа), рефлексы с сосудов на сердце (синокаротидная зона и зона дуги аорты), рефлексы с органов на сердце (рефлекс Гольца и Даниньи Ашнера).

    Гуморальная регуляция работы сердца: адреналин, норадреналин и дофамин оказывают на сердце положительные ино-, хроно-, батмо- и дромотропное действия; ацетилхолин - отрицательные ино-, хроно-, батмо- и дромотропное влияния; тироксин – положительный хронотропный эффект; глюкагон – положительные ино- и хронотропное действия; кортикостероиды и ангиотензин – положительное инотропное действие. Ионы кальция оказывают положительные батмо- и инотропное влияния, передозировка вызывает остановку сердца в систоле; ионы калия (большие дозы) –отрицательные батмо- и дромотропное действия и остановку сердца в диастоле.

    Методы исследования сердца: осмотр, пальпация, перкуссия, аускультация, определение систолического и минутного объемов крови, электрокардиография, векторкардиография, фонокардиография, баллистокардиография, эхокардиография и др.

    Сосудистая система. Движение крови по сосудам подчиняется законам гемодинамики, являющейся разделом гидродинамики. Функциональная классификация сосудов: амортизирующие сосуды (сосуды эластического типа); резистивные сосуды (сосуды сопротивления); сосуды-сфинктеры; обменные сосуды; емкостные сосуды; шунтирующие сосуды (артерио-венозные анастомозы). Параметры кровообращения: кровяное давление; линейная скорость кровотока; объемная скорость кровотока; время кругооборота крови. Факторы, определяющие величину артериального давления (АД): работа сердца, сопротивление и эластичность сосудистой стенки, масса циркулирующей крови, вязкость крови, нейрогуморальные влияния. Различают систолическое, диастолическое, пульсовое и среднее артериальное давления. Линейная скорость кровотока - расстояние, которое проходит частица крови через сосуды определенного калибра в единицу времени. Объемная скорость кровотока - количество крови, протекающее через сосуды определенного калибра в единицу времени. Скорость кругооборота крови - время, за которое частица крови проходит большой и малый круги кровообращения. Артериальный пульс - ритмические колебания стенки артерии, обусловленные повышением давления в период систолы. Венный пульс - пульсовые колебания стенки крупной вены, обусловленные затруднением притока крови из вен в сердце во время систолы предсердий и желудочков.

    Микроциркуляция - процессы движения крови по мельчайшим кровеносным и лимфатическим сосудам. Микроциркуляция включает процессы, связанные с внутриорганным кровообращением, обеспечивающим тканевой метаболизм, перераспределение и депонирование крови. В системе микроциркуляции различают 2 вида кровотока: медленный транскапиллярный и быстрый юкстакапиллярный.

    Нейрогуморальная регуляция тонуса сосудов . Нервная регуляция. Главный сосудодвигательный центр находится в продолговатом мозге. Симпатические нервы суживают сосуды; некоторые парасимпатические нервы (языкоглоточный, язычный, верхнегортанный, тазовый) расширяют сосуды иннервируемого ими органа. Сосуды находятся под постоянным тонусом симпатических нервов. Базальный тонус – за счет самой сосудистой стенки. Дополнительные факторы, расширяющие сосуды: раздражение задних корешков спинного мозга, аксон-рефлекс, раздражение симпатических холинергических волокон. Рефлекторная регуляция: собственные рефлексы – рефлексы с сосудов на сосуды (синокаротидная и аортальная зоны) и сопряженные рефлексы – с органов на сосуды. Гуморальная регуляция: сосудосуживающие вещества – адреналин, норадреналин, вазопрессин, серотонин, ренин, эндотелин, ионы кальция; сосудорасширяющие вещества – ацетилхолин, гистамин, брадикинин, простагландины, молочная и пировиноградная кислоты, аденозин, углекислый газ, оксид азота, ионы калия и натрия.

    Методы исследования сосудов: сфигмография, флебография, плетизмография, реография.

    Лимфатическая система – это дренажная система, по которой тканевая жидкость оттекает в кровеносное русло (венозную систему). Лимфатические капилляры замкнуты. Лимфангион – участок лимфососуда между двумя клапанами. Лимфатические узлы – фильтры, задерживающие микроорганизмы, опухолевые клетки, инородные частицы; содержат Т- и В-лимфоциты, отвечающие за иммунитет; в них образуются плазматические клетки, вырабатывающие антитела. Функции лимфатической системы: возврат белков, электролитов и воды из интерстиция в кровеносную систему; резорбтивная, барьерная, иммунобиологическая, участие в жировом обмене и обмене жирорастворимых витаминов. Состав лимфы: белки (альбумины, глобулины, фибриноген), липиды, ферменты (липаза и диастаза); хлор и бикарбонаты; много лимфоцитов, мало гранулоцитов и моноцитов.

    Занятие 1. Сердечный цикл. Распространение возбуждения в

    сердце. Автоматия. Проводящая система сердца.

    Задача 1. Сердечный цикл у лягушки (Пр. стр. 87-89).

    Задача 2. Анализ проводящей системы сердца методом наложения

    лигатур (лигатуры Станниуса) (Пр. стр. 90-92).

    Занятие 2. Свойства сердечной мышцы. Изменение возбудимости

    сердечной мышцы в различные фазы сердечной

    деятельности. Экстрасистола.

    Задача 1 . Воспроизведение экстрасистолы (Пр. стр. 98).

    Занятие 3. Нервная и гуморальная регуляция работы сердца.

    Задача 1. Влияние раздражения ваго-симпатического ствола на

    деятельность сердца лягушки. (Пр. стр. 111-113).

    Занятие 4. Методы исследования сердца. Электрические явления в

    сердце. Электрокардиография.

    Задача 1. Регистрация электрокардиограммы. (Пр. стр. 105).

    Задача 2 . Определение физической работоспособности (тест РWС 170)

    (Пр. стр. 436)

    Занятие 5. Физиология сосудов. Основные законы гемодинамики.

    Задача 1. Измерение кровяного давления у человека (по методу

    Рива-Рочи-Короткова) (Пр. стр. 127).

    Задача 2. Наблюдение кровотока в плавательной перепонке лапки

    лягушки (Пр. стр. 136).

    Занятие 6. Методы исследования кровотока. Коронарный

    кровоток.

    ФИЗИОЛОГИЯ Д Ы ХА Н И Я.

    Дыхание - сложный, циклически протекающий физиологический процесс, который обеспечивает газообмен (О 2 и СО 2) между окружающей средой и организмом в соответствии с его метаболическими потребностями. Процесс дыхания можно разделить на несколько этапов: внешнее дыхание (обмен газов между атмосферным и альвеолярным воздухом-«легочная вентиляция»; газообмен между кровью легочных капилляров и альвеолярным воздухом); транспорт газов кровью; обмен газов между кровью и клетками организма; внутреннее, или тканевое дыхание.

    Система внешнего дыхания, включает легкие и малый круг кровообращения (обеспечивают артериализацию крови), грудную клетку с дыхательной мускулатурой (обеспечивают дыхательный акт) и систему регуляции дыхания (дыхательный центр и другие отделы ЦНС). Вдох : импульс из дыхательного центра - сокращение инспираторных дыхательных мышц (диафрагмы и наружных межреберных мышц при спокойном вдохе) -увеличение объема грудной клетки - возрастание отрицательного давления в плевральной полости - увеличение объема легких - снижение внутрилегочного давления ниже атмосферного - поступление воздуха в легкие. Отрицательное давление в плевральной полости обусловлено эластической тягой легких. Эластическая тяга легких -сила, с которой легкие постоянно стремятся уменьшить свой объем.

    Пневмоторакс - поступление воздуха в плевральную полость. Ателектаз - спадение альвеол.

    Легочные объемы и емкости: жизненная емкость легких (ЖЕЛ), включающая в себя дыхательный объем (ДО), резервный объем вдоха (РОвд) и резервный объем выдоха (РОвыд); остаточный объем (ОО); функциональная остаточная емкость (ФОЕ=РОвыд+ОО); общая емкость легких ЖЕЛ+ОО); объем мертвого пространства (воздух, находящийся в воздухоносных путях и не участвующий в газообмене), входящий в состав ДО. Легочная вентиляция. Минутный объем дыхания (МОД= ДО х ЧД). Альвеолярная вентиляция=(ДО-объем мертвого пространства) х ЧД. Показатели газообмена: потребление кислорода (VО 2), коэффициент использования кислорода (КИО 2).

    Транспорт газов кровью . Механизм переноса кислорода из альвеолярного воздуха в кровь и углекислого газа из крови в альвеолярный воздух - диффузия. Формы переноса кислорода: кислород растворенный в плазме; в виде оксигемоглобина. Кислородная емкость крови - максимальное количество кислорода, которое способен связать гемоглобин при его полном насыщении кислородом. Кривая диссоциации оксигемоглобина – зависимость связывания кислорода кровью от его парциального давления. Факторы, влияющие на ее сдвиги вправо и влево (рСО2, температура, рН). Формы переноса углекислого газа: углекислый газ растворенный в плазме; в виде карбгемоглобина; в виде бикарбонатов натрия (в плазме) и калия (в эритроците).

    Нейрогуморальная регуляция дыхания. Нервная регуляция. Центры: спинальные (С3-С5 и Т2-Т10); бульбарный (главный), состоящий из инспираторного и экспираторного отделов, обладающий автоматией; варолиев мост (пневмотаксический). Диафрагмальный нерв и межреберные нервы иннервируют дыхательную мускулатуру.Рефлекторная регуляция - дыхательные рефлексы начинаются с различных рецепторов: медленно адаптирующихся рецепторов растяжения легких (рефлекс Геринга-Брейера, блуждающий нерв), ирритантных быстро адаптирующихся механорецепторов (кашель, бронхоспазм), J-рецепторов, или «юкстакапиллярных» рецепторов легких (отек легких), проприорецепторов дыхательных мышц, периферических (артериальных в каротидных синусах) и центральных (в гипоталамусе) хеморецепторов. Гуморальная регуляция: Гиперкапния (увеличение СО2 в крови), гипоксия (недостаток кислорода в тканях) и водородные ионы (ацидоз) стимулируют дыхание. Гипокапния (уменьшение СО2 в крови) и гипероксия (увеличение О2 в альвеолярном воздухе) угнетают дыхание. Опыт Фредерика с перекрестным кровообращением. Опыт Холдейна.

    Методы исследования функции дыхания: спирометрия и спирография, пневмотахография.

    Занятие 1. Внешнее дыхание. Легочные объемы и емкости.

    Задача 1. Спирометрия: сухой и водяной спирометры (Пр. стр. 174).

    Задача 2 . Определение минутного объема дыхания в покое и при

    физической нагрузке (Пр. стр. 188).

    Занятие 2. Газообмен в легких. Транспорт газов кровью.

    Задача 1. Газоанализ атмосферного, выдыхаемого, альвеолярного воздуха

    с помощью газоанализаторов. (Демонстрация).

    Задача 2. Определение рН, рО 2 , рСО 2 в артериализированной крови с

    помощью микроанализатора. (Демонстрация).

    Занятие 3. Регуляция дыхания.

    Задача 1. Пневмография (Пр. стр. 182).

    Задача 2. Оценка проходимости трахеобронхиального дерева с помощью

    прибора «Пневмоскрин-2». (Демонстрация).


    Похожая информация.




    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
    ПОДЕЛИТЬСЯ: