Про заболевания ЖКТ

Монотонность

Очень важным свойством функции является ее монотонность. Зная это свойство различных специальных функций, можно определить поведение различных физических, экономических, социальных и многих других процессов.

Выделяют следующие виды монотонности функций:

1) функция возрастает , если на некотором интервале, если для любых двух точек и этого интервала таких, что выполнено, что . Т.е. большему значению аргумента соответствует большее значение функции;

2) функция убывает , если на некотором интервале, если для любых двух точек и этого интервала таких, что выполнено, что . Т.е. большему значению аргумента соответствует меньшее значение функции;

3) функция неубывает , если на некотором интервале, если для любых двух точек и этого интервала таких, что выполнено, что ;

4) функция невозрастает , если на некотором интервале, если для любых двух точек и этого интервала таких, что выполнено, что .

2. Для первых двух случаев еще применяют термин «строгая монотонность».

3. Два последних случая являются специфическими и задаются обычно в виде композиции из нескольких функций.

4. Отдельно отметим, что рассматривать возрастание и убывание графика функции следует именно слева-направо и никак иначе.

2. Четность/нечетность.

Функция называется нечетной , если при изменении знака аргумента, она меняет свое значение на противоположное. Формульная запись этого выглядит так . Это значит, что после подстановки в функцию на место всех иксов значений «минус икс», функция изменит свой знак. График такой функции симметричен относительно начала координат.

Примерами нечетных функций являются и др.

Например, график действительно обладает симметричностью относительно начала координат:

Функция называется четной , если при изменении знака аргумента, она не меняет свое значение. Формульная запись этого выглядит так . Это значит, что после подстановки в функцию на место всех иксов значений «минус икс», функция в результате не изменится. График такой функции симметричен относительно оси .

Примерами четных функций являются и др.

К примеру, покажем симметричность графика относительно оси :

Если функция не относится ни к одному из указанных видов, то ее называют ни четной ни нечетной или функцией общего вида . У таких функций нет симметрии.

Такой функцией, например, является недавно рассмотренная нами линейная функция с графиком:

3. Особым свойством функций является периодичность.

Дело в том, что периодичными функциями, которые рассматриваются в стандартной школьной программе, являются только тригонометрические функции. Мы уже подробно о них говорили при изучении соответствующей темы.

Периодичная функция – это функция, которая не меняет свои значения при добавлении к аргументу определенного постоянного ненулевого числа.

Такое минимальное число называют периодом функции и обозначают буквой .

Формульная запись этого выглядит следующим образом: .

Посмотрим на это свойство на примере графика синуса:

Вспомним, что периодом функций и является , а периодом и – .

Как мы уже знаем, для тригонометрических функций со сложным аргументом может быть нестандартный период. Речь идет о функциях вида:

У них период равен . И о функциях:

У них период равен .

Как видим, для вычисления нового периода стандартный период просто делится на множитель при аргументе. От остальных видоизменений функции он не зависит.

Ограниченность.

Функцию y=f(x)называют ограниченной снизу на множестве Х⊂D(f), если существует такое число а, что для любых хϵХ выполняется неравенство f(x) < a.

Функцию y=f(x)называют ограниченной сверху на множестве Х⊂D(f), если существует такое число а, что для любых хϵХ выполняется неравенство f(x) < a.

Если промежуток Х не указывается, то считают, что функция ограничена на всей области определения. Функция ограниченная и сверху, и снизу называется ограниченной.

Ограниченность функции легко читается по графику. Можно провести некоторую прямую у=а, и если функция выше этой прямой, то ограниченность снизу.

Если ниже, то соответственно сверху. Ниже представлен график ограниченной снизу функции. График ограниченной функции, ребята, попробуйте нарисовать сами.

Тема: Свойства функций: промежутки возрастания и убывания; наибольшее и наименьшее значения; точки экстремума (локального максимума и минимума), выпуклость функции.

Промежутки возрастания и убывания.

На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.

Вот формулировки признаков возрастания и убывания функции на интервале:

· если производная функции y=f(x) положительна для любого x из интервала X , то функция возрастает на X ;

· если производная функции y=f(x) отрицательна для любого x из интервала X , то функция убывает на X .

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

· найти область определения функции;

· найти производную функции;

· решить неравенства и на области определения;

· к полученным промежуткам добавить граничные точки, в которых функция определена и непрерывна.

Рассмотрим пример нахождения промежутков возрастания и убывания функции для разъяснения алгоритма.

Пример:

Найти промежутки возрастания и убывания функции .

Решение.

На первом шаге нужно найти область определения функции. В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, .

Переходим к нахождению производной функции:

Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства и на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2 , а знаменатель обращается в ноль при x=0 . Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале.

Таким образом, и .

В точке x=2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x=0 функция не определена, поэтому эту точку не включаем в искомые интервалы.

Приводим график функции для сопоставления с ним полученных результатов.

Ответ: функция возрастает при , убывает на интервале (0;2] .


Похожая информация.


1. Найти область определения функции

2.Найти производную функции

3. Приравнять производную к нулю и найти критические точки функции

4. Отметить критические точки на области определения

5. Вычислить знак производной в каждом из полученных интервалов

6. Выяснить поведение функции в каждом интервале.

Пример: Найдите промежутки возрастания и убывания функции f (x ) = и число нулей данной функции на промежутке .

Решение:

1. D(f ) = R

2. f "(x ) =

D(f ") = D(f ) = R

3. Найдём критические точки функции, решив уравнение f "(x ) = 0.

x (x – 10) = 0

критические точки функции x = 0 и x = 10.

4. Определим знак производной.

f "(x ) + – +


f (x ) 0 10 x

в промежутках (-∞; 0) и (10; +∞) производная функции положительна и в точках x = 0 и x = 10 функция f (x ) непрерывна, следовательно, данная функция возрастает на промежутках: (-∞; 0]; .

Определим знак значений функции на концах отрезка.

f (0) = 3, f (0) > 0

f (10) = , f (10) < 0.

Так как на отрезке функция убывает и знак значений функции изменяется, то на этом отрезке один нуль функции.

Ответ: функция f(x) возрастает на промежутках: (-∞; 0]; ;

на промежутке функция имеет один нуль функции.

2. Точки экстремума функции: точки максимума и точки минимума. Необходимое и достаточное условия существования экстремума функции. Правило исследования функции на экстремум .

Определение 1: Точки, в которых производная равна нулю, называются критическими или стационарными.

Определение 2 . Точка называется точкой минимума (максимума) функции , если значение функции в этой точке меньше (больше) ближайших значений функии.

Следует иметь в виду, что максимум и минимум в данном случае являются локальными.

На рис. 1. изображены локальные максимумы и минимумы.

Максимум и минимум функции объединены общим названием: экстремум функции.

Теорема 1. (необходимый признак существования экстремума функции). Если дифференцируемая в точке функция имеет в этой точке максимум или минимум, то ее производная при обращается в нуль, .

Теорема 2. (достаточный признак существования экстремума функции). Если непрерывная функция имеет производную во всех точках некоторого интервала, содержащего критическую точку (за исключением может быть самой этой точки), и если производная при переходе аргумента слева направо через критическую точку меняет знак с плюса на минус, то функция в этой точке имеет максимум, а при переходе знака с минуса на плюс – минимум.


Очень важную информацию о поведении функции предоставляют промежутки возрастания и убывания. Их нахождение является частью процесса исследования функции и построения графика . К тому же точкам экстремума, в которых происходит смена с возрастания на убывание или с убывания на возрастание, уделяется особое внимание при нахождении наибольшего и наименьшего значения функции на некотором интервале.

В этой статье дадим необходимые определения, сформулируем достаточный признак возрастания и убывания функции на интервале и достаточные условия существования экстремума, применим всю эту теорию к решению примеров и задач.

Навигация по странице.

Возрастание и убывание функции на интервале.

Определение возрастающей функции.

Функция y=f(x) возрастает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Определение убывающей функции.

Функция y=f(x) убывает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.


ЗАМЕЧАНИЕ: если функция определена и непрерывна в концах интервала возрастания или убывания (a;b) , то есть при x=a и x=b , то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X .

К примеру, из свойств основных элементарных функций мы знаем, что y=sinx определена и непрерывна для всех действительных значений аргумента. Поэтому, из возрастания функции синуса на интервале мы можем утверждать о возрастании на отрезке .

Точки экстремума, экстремумы функции.

Точку называют точкой максимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума , а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

Не путайте экстремумы функции с наибольшим и наименьшим значением функции.


На первом рисунке наибольшее значение функции на отрезке достигается в точке максимума и равно максимуму функции, а на втором рисунке – наибольшее значение функции достигается в точке x=b , которая не является точкой максимума.

Достаточные условия возрастания и убывания функции.

На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.

Вот формулировки признаков возрастания и убывания функции на интервале:

  • если производная функции y=f(x) положительна для любого x из интервала X , то функция возрастает на X ;
  • если производная функции y=f(x) отрицательна для любого x из интервала X , то функция убывает на X .

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

Рассмотрим пример нахождения промежутков возрастания и убывания функции для разъяснения алгоритма.

Пример.

Найти промежутки возрастания и убывания функции .

Решение.

На первом шаге нужно найти область определения функции . В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, .

Переходим к нахождению производной функции:

Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства и на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2 , а знаменатель обращается в ноль при x=0 . Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале.

Таким образом, и .

В точке x=2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x=0 функция не определена, поэтому эту точку не включаем в искомые интервалы.

Приводим график функции для сопоставления с ним полученных результатов.

Ответ:

Функция возрастает при , убывает на интервале (0;2] .

Достаточные условия экстремума функции.

Для нахождения максимумов и минимумов функции можно пользоваться любым из трех признаков экстремума, конечно, если функция удовлетворяет их условиям. Самым распространенным и удобным является первый из них.

Первое достаточное условие экстремума.

Пусть функция y=f(x) дифференцируема в -окрестности точки , а в самой точке непрерывна.

Другими словами:

Алгоритм нахождения точек экстремума по первому признаку экстремума функции.

  • Находим область определения функции.
  • Находим производную функции на области определения.
  • Определяем нули числителя, нули знаменателя производной и точки области определения, в которых производная не существует (все перечисленные точки называют точками возможного экстремума , проходя через эти точки, производная как раз может изменять свой знак).
  • Эти точки разбивают область определения функции на промежутки, в которых производная сохраняет знак. Определяем знаки производной на каждом из интервалов (например, вычисляя значение производной функции в любой точке отдельно взятого интервала).
  • Выбираем точки, в которых функция непрерывна и, проходя через которые, производная меняет знак - они и являются точками экстремума.

Слишком много слов, рассмотрим лучше несколько примеров нахождения точек экстремума и экстремумов функции с помощью первого достаточного условия экстремума функции.

Пример.

Найти экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел, кроме x=2 .

Находим производную:

Нулями числителя являются точки x=-1 и x=5 , знаменатель обращается в ноль при x=2 . Отмечаем эти точки на числовой оси

Определяем знаки производной на каждом интервале, для этого вычислим значение производной в любой из точек каждого интервала, например, в точках x=-2, x=0, x=3 и x=6 .

Следовательно, на интервале производная положительна (на рисунке ставим знак плюс над этим интервалом). Аналогично

Поэтому над вторым интервалом ставим минус, над третьим – минус, над четвертым – плюс.

Осталось выбрать точки, в которых функция непрерывна и ее производная меняет знак. Это и есть точки экстремума.

В точке x=-1 функция непрерывна и производная меняет знак с плюса на минус, следовательно, по первому признаку экстремума, x=-1 – точка максимума, ей соответствуем максимум функции .

В точке x=5 функция непрерывна и производная меняет знак с минуса на плюс, следовательно, x=-1 – точка минимума, ей соответствуем минимум функции .

Графическая иллюстрация.

Ответ:

ОБРАТИТЕ ВНИМАНИЕ: первый достаточный признак экстремума не требует дифференцируемости функции в самой точке .

Пример.

Найдите точки экстремума и экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел. Саму функцию можно записать в виде:

Найдем производную функции:

В точке x=0 производная не существует, так как значения односторонних пределов при стремлении аргумента к нулю не совпадают:

В это же время, исходная функция является непрерывной в точке x=0 (смотрите раздел исследование функции на непрерывность):

Найдем значения аргумента, при котором производная обращается в ноль:

Отметим все полученные точки на числовой прямой и определим знак производной на каждом из интервалов. Для этого вычислим значения производной в произвольных точках каждого интервала, к примеру, при x=-6, x=-4, x=-1, x=1, x=4, x=6 .

То есть,

Таким образом, по первому признаку экстремума, точками минимума являются , точками максимума являются .

Вычисляем соответствующие минимумы функции

Вычисляем соответствующие максимумы функции

Графическая иллюстрация.

Ответ:

.

Второй признак экстремума функции.

Как видите, этот признак экстремума функции требует существования производной как минимум до второго порядка в точке .

Возрастание и убывание функции

функция y = f (x ) называется возрастающей на отрезке [a , b ], если для любой пары точек х и х" , а ≤ х выполняется неравенство f (x ) f (x" ), и строго возрастающей - если выполняется неравенство f (x ) f (x" ). Аналогично определяется убывание и строгое убывание функции. Например, функция у = х 2 (рис. , а) строго возрастает на отрезке , а

(рис. , б) строго убывает на этом отрезке. Возрастающие функции обозначаются f (x ), а убывающие f (x )↓. Для того чтобы дифференцируемая функция f (x ) была возрастающей на отрезке [а , b ], необходимо и достаточно, чтобы её производная f "(x ) была неотрицательной на [а , b ].

Наряду с возрастанием и убыванием функции на отрезке рассматривают возрастание и убывание функции в точке. Функция у = f (x ) называется возрастающей в точке x 0 , если найдётся такой интервал (α, β), содержащий точку x 0 , что для любой точки х из (α, β), х> x 0 , выполняется неравенство f (x 0) f (x ), и для любой точки х из (α, β), х 0 , выполняется неравенство f (x ) ≤ f (x 0). Аналогично определяется строгое возрастание функции в точке x 0 . Если f "(x 0) > 0, то функция f (x ) строго возрастает в точке x 0 . Если f (x ) возрастает в каждой точке интервала (a , b ), то она возрастает на этом интервале.

С. Б. Стечкин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Возрастание и убывание функции" в других словарях:

    Понятия математического анализа. Функция f(x) называется возрастающей на отрезке ВОЗРАСТНАЯ СТРУКТУРА НАСЕЛЕНИЯ соотношение численности разных возрастных групп населения. Зависит от уровней рождаемости и смертности, продолжительности жизни людей … Большой Энциклопедический словарь

    Понятия математического анализа. Функция f(х) называется возрастающей на отрезке , если для любой пары точек x1 и x2, a≤x1 … Энциклопедический словарь

    Понятия матем. анализа. Ф ция f(x) наз. возрастающей на отрезке [а, b], если для любой пары точек х1 и x2, а<или=х1 <х<или=b, выполняется неравенство f(x1)Естествознание. Энциклопедический словарь

    Раздел математики, в котором изучаются производные и дифференциалы функций и их применения к исследованию функций. Оформление Д. и. в самостоятельную математическую дисциплину связано с именами И. Ньютона и Г. Лейбница (вторая половина 17 … Большая советская энциклопедия

    Раздел математики, в к ром изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Развитие Д. и. тесно связано с развитием интегрального исчисления. Неразрывно и их содержание. Вместе они составляют основу… … Математическая энциклопедия

    У этого термина существуют и другие значения, см. функция. Запрос «Отображение» перенаправляется сюда; см. также другие значения … Википедия

    Аристотель и перипатетики - Аристотелевский вопрос Жизнь Аристотеля Аристотель родился в 384/383 гг. до н. э. в Стагире, на границе с Македонией. Его отец по имени Никомах был врачом на службе у македонского царя Аминта, отца Филиппа. Вместе с семьей молодой Аристотель… … Западная философия от истоков до наших дней

    - (КХД), квантовополевая теория сильного вз ствия кварков и глюонов, построенная по образу квант. электродинамики (КЭД) на основе «цветовой» калибровочной симметрии. В отличие от КЭД, фермионы в КХД имеют дополнит. степень свободы квант. число,… … Физическая энциклопедия

    I Сердце Сердце (лат. соr, греч. cardia) полый фиброзно мышечный орган, который, функционируя как насос, обеспечивает движение крови а системе кровообращения. Анатомия Сердце находится в переднем средостении (Средостение) в Перикарде между… … Медицинская энциклопедия

    Жизнь растения, как и всякого другого живого организма, представляет сложную совокупность взаимосвязанных процессов; наиболее существенный из них, как известно, обмен веществ с окружающей средой. Среда является тем источником, откуда… … Биологическая энциклопедия

Производной. Если производная функции положительна для любой точки интервала, то функция возрастает, если отрицательна – убывает.

Чтобы найти промежутки возрастания и убывания функции, нужно найти область ее определения, производную, решить неравенства вида F’(x) > 0 и F’(x)

Решение.



3. Решим неравенства y’ > 0 и y’ 0;
(4 - x)/x³


Решение.
1. Найдем область определения функции. Очевидно, что выражение, стоящее в знаменателе, должно всегда быть отличным от нуля. Поэтому 0 исключается из области определения: функция определена при x ∈ (-∞; 0)∪(0; +∞).

2. Вычислим производную функции:
y’(x) = ((3·x² + 2·x - 4)’ ·x² – (3·x² + 2·x - 4) · (x²)’)/x^4 = ((6·x + 2) ·x² – (3·x² + 2·x - 4) ·2·x)/x^4 = (6·x³ + 2·x² – 6·x³ – 4·x² + 8·x)/x^4 = (8·x – 2·x²)/x^4 = 2· (4 - x)/x³.

3. Решим неравенства y’ > 0 и y’ 0;
(4 - x)/x³

4. Левая часть неравенства имеет один действительный х = 4 и обращается в при x = 0. Поэтому значение x = 4 включается и в промежуток , и в промежуток убывания, а точка 0 не включается .
Итак, искомая функция возрастает на промежутке x ∈ (-∞; 0) ∪ .

4. Левая часть неравенства имеет один действительный х = 4 и обращается в при x = 0. Поэтому значение x = 4 включается и в промежуток , и в промежуток убывания, а точка 0 не включается .
Итак, искомая функция возрастает на промежутке x ∈ (-∞; 0) ∪ .

Источники:

  • как найти на функции промежутки убывания

Функция представляет собой строгую зависимость одного числа от другого, или значения функции (y) от аргумента (х). Каждый процесс (не только в математике), может быть описан своей функцией, которая будет иметь характерные особенности: промежутки убывания и возрастания, точки минимумов и максимумов и так далее.

Вам понадобится

  • - бумага;
  • - ручка.

Инструкция

Пример 2.
Найти промежутки убывания f(x)=sinx +x.
Производная данной функции будет равна: f’(x)=cosx+1.
Решая неравенство cosx+1

Интервалом монотонности функции можно назвать промежуток, в котором функция либо только возрастает, либо только убывает. Ряд определенных действий поможет найти такие диапазоны для функции, что нередко требуется в алгебраических задачах подобного рода.

Инструкция

Первым шагом в решении задачи по определению интервалов, в которых функция монотонно возрастает или убывает, станет вычисление данной функции. Для этого узнайте все значения аргументов (значения по оси абсцисс), для которых можно найти значение функции. Отметьте точки, в которых наблюдаются разрывы. Найдите производную функции. Определив выражение, которое представляет собой производную, приравняйте его к нулю. После этого следует найти корни получившегося . Не про область допустимых .

Точки, в которых функция либо в которых ее производная равна нулю, представляют собой границы интервалов монотонности . Эти диапазоны, а также точки, их разделяющие, следует последовательно внести в таблицу. Найдите знак производной функции в полученных промежутках. Для этого подставьте в выражение, соответствующее производной, любой аргумент из интервала. Если результат положительный, функция в данном диапазоне возрастает, в обратном случае - убывает. Результаты вносятся в таблицу.

В строку, обозначающую производную функции f’(x), записывается соответствующий значениям аргументов : «+» - если производная положительна,«-» - отрицательна или «0» – равна нулю. В следующей строке отметьте монотонность самого исходного выражения. Стрелка вверх соответствует возрастанию, вниз – убыванию. Отметьте функции. Это точки, в которых производная равна нулю. Экстремум может быть либо точкой максимума, либо точкой минимума. Если предыдущий участок функции возрастал, а текущий убывает, это точка максимума. В случае, когда до данной точки функция убывала, а теперь возрастает – это точка минимума. Внесите в таблицу значения функции в точках экстремума.

Источники:

  • что такое определение монотонность

Исследование поведения функции, имеющей сложную зависимость от аргумента, проводится с помощью производной. По характеру изменения производной можно найти критические точки и участки роста или убывания функции.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: