Про заболевания ЖКТ

В работе представлены рекомендации, в виде алгоритмов, по организации опытов, проводимых самими учащимися в классе при ответах, вне школы по домашним заданиям учителя; по организации кратковременных и длительных наблюдений за явлениями природы, заданий изобретательского характера по созданию оборудований для экспериментов, действующих моделей машин и механизмов, проводимых учащимися на дому по особым заданиям учителя, также в работе систематизированы виды физических экспериментов, приведены примеры экспериментальных заданий по разным темам и разделам физики 7- 9 классов.

Скачать:


Предварительный просмотр:

Муниципальный конкурс

общественно значимых педагогических инноваций в сфере

общего, дошкольного и дополнительного образования

муниципального образования город-курорт Геленджик

по организации экспериментальной работы

на уроках физики и во внеурочное время.

учитель физики и математики

МАОУ СОШ №12

города-курорта Геленджик

Краснодарского края

Геленджик - 2015

Введение ……………………………………………………………………......3

1.1 Виды физических экспериментов.……….. …………………………..5

2.1 Алгоритм создания экспериментальных заданий…….……………..8

2.2 Результаты апробирования экспериментальных задач в 7-9-х классах...........................................................................................................10

Заключение …………………………………………………………………...12

Литература …………………………………………………………………....13

Приложение………………………………………………………………….14

4. Урок в 8-м классе в по теме «Последовательное и параллельное

Соединение проводников».

«Радость видеть и понимать есть самый прекрасный дар природы».

Альберт Эйнштейн

Введение

В соответствии с новыми требованиями государственного образовательного стандарта методологической основой образования является системно-деятельностный подход, позволяющий формировать у обучающихся универсальные учебные действия, среди которых важное место занимает приобретение опыта применения научных методов познания, формирование навыков экспериментальной работы.

Одним из путей осуществления связи теории с практикой является постановка экспериментальных задач, решение которых показывает учащимся законы в действии, выявляет объективность законов природы, их обязательное выполнение, показывает использование людьми знаний законов природы для предвидения явлений и управления ими, важность их изучения для достижения конкретных, практических целей. Особенно ценным надо признать такие экспериментальные задачи, данные для решения которых, берутся из опыта, протекающего на глазах учащихся, а правильность решения проверяется опытом или контрольным прибором. В этом случае теоретические положения, изучаемые в курсе физики, приобретают особую значимость в глазах учащихся. Одно дело - путем рассуждений и эксперимента прийти к некоторым выводам и их математическому оформлению, т.е. к формуле, которую надо будет заучивать и уметь выводить, и этим ограничиться, другое дело - на базе этих выводов и формул уметь ими управлять.

Актуальность инновации обусловлена тем, что организация учебной работы должна быть поставлена так, чтобы затрагивала личностную сферу детей, а учитель создавал бы новые формы работы. Творческое направление работы сближает учителя и ученика, активизирует познавательную деятельность участников образовательного процесса.

В работе представлены рекомендации в виде алгоритмов по организации опытов, проводимых самими учащимися в классе при ответах, вне школы по домашним заданиям учителя; по организации наблюдений кратковременных и длительных явлений природы, заданий изобретательского характера по созданию оборудований для экспериментов, действующих моделей машин и механизмов, проводимых учащимися на дому по особым заданиям учителя, также в работе систематизированы виды физических экспериментов, приведены примеры экспериментальных заданий по разным темам и разделам физики 7- 9 классов. В работе использованы следующие материалы, в которых представлены физические эксперименты, используемые в работе над проектами, во время учебной деятельности и внеурочное время:

Буров В.

Мансветова Г.П., Гудкова В.Ф.. Физический эксперимент в школе. Из опыта работы. Пособие для учителей. Вып.6/– М.: Просвещение, 1981. – 192с., ил., а также материалы сети Интернет http://kopilkaurokov.ru/ , http://www.metod-kopilka.ru/ ,

При анализе существующих в России аналогичных продуктов выявлено: в физике, и в системе образования в целом, произошли большие изменения. Появление нового продукта по данной тематике пополнит методическую копилку учителей физики и активизирует работу по реализации ФГОС в обучении физики.

Все эксперименты, представленные в работе, проводились на уроках физики в 7-9-х классах МАОУ СОШ №12, в процессе подготовки к ЕГЭ по физике в 11-х классах, во время проведения Недели физики, некоторые из них демонстрировались мной на заседании ГМО учителей физики, опубликованы на сайте социальной сети работников образования сайт.

Глава I. Место эксперимента в изучении физики

  1. Виды физических экспериментов

В объяснительной записке к программам по физике говорится о необходимости ознакомления учащихся с методами науки.

Методы физической науки подразделяются на теоретические и экспериментальные. В данной работе рассмотрен «эксперимент» как один из основополагающих методов в изучении физики.

Слово "эксперимент" (от латинского experimentum) означает "проба", "опыт". Экспериментальный метод возник в естествознании нового времени (Г, Галилей, У. Гильберт). Его философское осмысление впервые дано в работах Ф. Бэкона. Учебный эксперимент - это средство обучения в виде специально организованных и проводимых учителем и учеником опытов.

Цели учебного эксперимента:

  • Решение основных учебно – воспитательных задач;
  • Формирование и развитие познавательной и мыслительной деятельности;
  • Политехническая подготовка;
  • Формирование научного мировоззрения учащихся.

Учебные физические эксперименты можно объединить в следующие группы:

Демонстрационный эксперимент , являясь средством наглядности, способствует организации восприятия учащимися учебного материала, его пониманию и запоминанию; позволяет осуществить политехническое обучение учащихся; способствует повышению интереса к изучению физике и созданию мотивации учения. При демонстрации эксперимента важно, чтобы обучающиеся сами могли объяснить увиденное явление и методом мозгового штурма пришли к общему выводу. Я часто применяю этот метод при объяснении нового материала. Использую также видеофрагменты с опытами без звукового сопровождения по изучаемой теме и прошу объяснить увиденное явление. Потом предлагаю послушать звуковое сопровождение и найти ошибку в своих рассуждениях.
При выполнении
лабораторных работ учащиеся получают опыт самостоятельной экспериментальной деятельности, у них вырабатываются такие важные личностные качества, как аккуратность в работе приборами; соблюдение чистоты и порядка на рабочем месте, в записях, которые делаются во время эксперимента, организованность, настойчивость в получении результата. У них формируется определенная культура умственного и физического труда.

Домашние экспериментальные задания и лабораторные работы выполняются учащимися дома без непосредственного контроля со стороны учителя за ходом работы.
Экспериментальные работы этого вида формируют у учащихся:
- умения наблюдать физические явления в природе и в быту;
- умения выполнять измерения с помощью измерительных средств, использующихся в быту;
- интерес к эксперименту и к изучению физики;
- самостоятельность и активность.
Для того чтобы ученик мог провести дома лабораторную работу учитель должен провести подробный инструктаж и дать четкий алгоритм действий ученику.

Экспериментальные задачи представляют собой задания, данные в которых учащиеся получают из опытных условий. По специальному алгоритму учащиеся собирают опытную установку, выполняют измерения и результаты измерений используют в решении задачи.
Создание действующих моделей приборов, машин и механизмов . Ежегодно в школе в рамках недели физики я провожу конкурс изобретателей, на который учащиеся представляют все свои изобретательские идеи. Предварительно на уроке они демонстрируют свое изобретение и объясняют, какие физические явления и законы положены в основу этого изобретения. К работе над своими изобретениями учащиеся очень часто привлекают своих родителей, и это становится своего рода семейным проектом. Такой вид работы несет в себе большой воспитательный эффект.

2.1 Алгоритм создания экспериментальных заданий

Основное назначение экспериментальных заданий – способствовать формированию у учащихся основных понятий, законов, теорий, развитию мышления, самостоятельности, практических умений и навыков, в том числе умений наблюдать физические явления, выполнять простые опыты, измерения, обращаться с приборами и материалами, анализировать результаты эксперимента, делать обобщения и выводы.

Обучающимся предлагается следующий алгоритм проведения эксперимента:

  1. Формулировка и обоснование гипотезы, которую можно положить в основу эксперимента.
  2. Определение цели эксперимента.
  3. Выяснение условий, необходимых для достижения поставленной цели эксперимента.
  4. Планирование эксперимента.
  5. Отбор необходимых приборов и материалов.
  6. Сбор установки.
  7. Проведение опыта, сопровождаемое наблюдениями, измерениями и записью их результатов.
  8. Математическая обработка результатов измерений.
  9. Анализ результатов эксперимента, формулировка выводов.

Общую структуру физического эксперимента можно представить в виде:


Проводя любой эксперимент, необходимо помнить о требованиях, предъявляемых к эксперименту.

Требования к эксперименту:

  • Наглядность;
  • Кратковременность;
  • Убедительность, доступность, достоверность;
  • Безопасность.

2.2 Результаты апробирования экспериментальных задач

в 7-9-х классах

Экспериментальные задачи - это небольшие по объему, связанные непосредственно с изучаемым материалом задания, направленные на усвоение практических навыков, которые включаются в разные этапы урока (проверка знаний, изучение нового учебного материала, закрепленных знаний, самостоятельная работа на учебном занятии). Очень важно после выполнения экспериментальной задачи проанализировать полученные результаты, сделать выводы.

Рассмотрим различные формы творческих заданий, какие я применяла в своей работе на каждом отдельном этапе обучения физике в средней школе:

В 7-х классах начинается знакомство с физическими терминами, с физическими величинами и методами изучения физических явлений. Один из наглядных методов изучения физики - опыты, которые можно поставить и в классе и дома. Здесь эффективными могут быть экспериментальные задачи и творческие задания, где надо придумать, как измерить физическую величину или как продемонстрировать физическое явление. Такую работу всегда оцениваю положительной оценкой.

В 8-х классах использую следующие формы экспериментальных заданий:

1) исследовательские задачи – как элементы урока;

2) экспериментальные домашние задания;

3) сделать небольшое сообщение - исследование по некоторым темам.

В 9-х классах уровень сложности экспериментальных заданий должен быть выше. Здесь я применяю:

1) творческие задания по постановке опыта в начале урока - как элемент проблемного задания; 2) экспериментальные задачи - как закрепление пройденного материала, или как элемент предвидения результата; 3) исследовательские задания - как кратковременная лабораторная работа(10-15 минут).

Применение экспериментальных заданий на уроках и во внеурочное время в качестве домашних заданий привело к повышению познавательной активности учащихся, повысило интерес к изучению физики.

Я провела анкетирование в 8-х классах, в которых физику изучают второй год, и получила следующие результаты:

Вопросы

Варианты ответов

8А класс

8Б класс

  1. Оцени твое отношение к предмету.

а) не люблю предмет,

б) интересуюсь,

в) люблю предмет, хочу узнать больше.

2. Как часто ты занимаешься предметом?

а) регулярно

б) иногда

в) очень редко

3. Читаешь ли ты дополнительную литературу по предмету?

а) постоянно

б) иногда

в) мало, совсем не читаю

4. Тебе хочется знать, понять, докопаться до сути?

а) почти всегда

б) иногда

в) очень редко

5. Хотел бы ты заниматься экспериментами во внеурочное время?

а) да, очень

б) иногда

в) достаточно урока

Из двух 8-х классов набралось 24 ученика, желающих более глубоко изучать физику и заниматься экспериментальной работой.

Мониторинг качества обученности учащихся

(учитель Петросян О.Р.)

Участие в олимпиадах по физике и конкурсах за 4 года

Заключение

«Детство ребенка - не период подготовки к будущей жизни, а полноценная жизнь. Следовательно, образование должно базироваться не на тех знаниях, которые когда-нибудь в будущем ему пригодятся, а на том, что остро необходимо ребенку сегодня, на проблемах его реальной жизни» (Джон Дьюи ).

Каждая современная школа Росссии обладает необходимым минимумом оборудования для проведения физических экспериментов, представленных в работе. Кроме того, домашние эксперименты проводятся исключительно из подручных средств. Создание простейших моделей и механизмов не требует больших затрат и обучающиеся с большим интересом берутся за работу, привлекая своих родителей. Данный продукт предназначен для использования учителями физики средней общеобразовательной школы.

Экспериментальные задания представляют учащимся возможность самостоятельно выявить первопричину физического явления на опыте в процессе его непосредственного рассмотрения. Применяя самое простейшее оборудование, даже предметы обихода, при проведении эксперимента, физика в представлениях учащихся из абстрактной системы знаний превращается в науку, изучающую «мир вокруг нас». Тем самым подчёркивается практическая значимость физических знаний в обычной жизни. На уроках с проведением эксперимента нет исходящего только от педагога потока информации, нет скучающих, безразличных взглядов обучающихся. Систематическая и целенаправленная работа по формированию умений и навыков экспериментальной работы дает возможность уже на начальном этапе изучения физики приобщить обучающихся к научному поиску, научить излагать свои мысли, вести публичную дискуссию, отстаивать собственные выводы. А значит сделать обучение более эффективным и отвечающим современным требованиям.

Литература

  1. Биманова Г.М. "Использование инновационных технологий при преподавании физики в средней школе". Учитель СШ№173, г.Кызылорда-2013г. http://kopilkaurokov.ru/
  2. Браверман Э.М. Самостоятельное проведение учениками экспериментов //Физика в школе, 2000, №3 – с 43 – 46.
  3. Буров В. А. и др. Фронтальные экспериментальные задания по физике в 6-7 классах средней школы: Пособие для учителей/ В.А.Буров, С.Ф.Кабанов, В.И.Свиридов. – М.: Просвещение, 1981. – 112с., ил.
  4. Горовая С.В. «Организация наблюдений и постановка эксперимента на уроке физики - один из способов формирования ключевых компетенций». Учитель физики МОУ СОШ №27 г.Комсомольск-на-Амуре-2015г.

Приложение

Методические разработки уроков физики в 7-9-х классах с экспериментальными заданиями.

1.Урок в 7-м классе по теме «Давление твердых тел, жидкостей и газов».

2. Урок в 7-м классе по теме « Решение задач на определение КПД механизма».

3. Урок в 8-м классе по теме «Тепловые явления. Плавление и отвердевание».

4. Урок в 8-м классе в по теме «Электрические явления».

5. Урок в 9-м классе по теме «Законы Ньютона».

Учебный эксперимент - это средство обучения в виде специально организованных и проводимых учителем и учеником опытов. Цели учебного эксперимента: Решение основных учебно – воспитательных задач; Формирование и развитие познавательной и мыслительной деятельности; Политехническая подготовка; Формирование научного мировоззрения обучающихся. «Радость видеть и понимать есть самый прекрасный дар природы». Альберт Эйнштейн

Экспериментальные задачи Создание действующих моделей, приборов, машин и механизмов Домашние экспериментальные задания Лабораторная работа Демонстрационный опыт Физический эксперимент Учебные физические эксперименты можно объединить в следующие группы:

Демонстрационный эксперимент, являясь средством наглядности, способствует организации восприятия учащимися учебного материала, его пониманию и запоминанию; позволяет осуществить политехническое обучение учащихся; способствует повышению интереса к изучению физике и созданию мотивации учения. При демонстрации эксперимента важно, чтобы обучающиеся сами могли объяснить увиденное явление и методом мозгового штурма пришли к общему выводу. Я часто применяю этот метод при объяснении нового материала. Использую также видеофрагменты с опытами без звукового сопровождения по изучаемой теме и прошу объяснить увиденное явление. Потом предлагаю послушать звуковое сопровождение и найти ошибку в своих рассуждениях.

При выполнении лабораторных работ учащиеся получают опыт самостоятельной экспериментальной деятельности, у них вырабатываются такие важные личностные качества, как аккуратность в работе с приборами; соблюдение чистоты и порядка на рабочем месте, в записях, которые делаются во время эксперимента, организованность, настойчивость в получении результата. У них формируется определенная культура умственного и физического труда.

Домашние экспериментальные задания и лабораторные работы выполняются учащимися дома без непосредственного контроля со стороны учителя за ходом работы. Экспериментальные работы этого вида формируют у учащихся: - умения наблюдать физические явления в природе и в быту; - умения выполнять измерения с помощью измерительных средств, использующихся в быту; - интерес к эксперименту и к изучению физики; - самостоятельность и активность. Для того чтобы ученик мог провести дома лабораторную работу учитель должен провести подробный инструктаж и дать четкий алгоритм действий ученику.

Экспериментальные задачи представляют собой задания, данные в которых учащиеся получают из опытных условий. По специальному алгоритму учащиеся собирают опытную установку, выполняют измерения и результаты измерений используют в решении задачи.

Создание действующих моделей приборов, машин и механизмов. Ежегодно в школе в рамках недели физики я провожу конкурс изобретателей, на который учащиеся представляют все свои изобретательские идеи. Предварительно на уроке они демонстрируют свою работу и объясняют, какие физические явления и законы положены в основу этого изобретения. К работе учащиеся очень часто привлекают своих родителей, и это становится своего рода семейным проектом. Такой вид работы несет в себе большой воспитательный эффект.

Наблюдение Измерение и запись результатов Теоретический анализ и математическая обработка результатов измерений Выводы Структура физического эксперимента

Проводя любой эксперимент, необходимо помнить о требованиях, предъявляемых к эксперименту. Требования к эксперименту: Наглядность; Кратковременность; Убедительность, доступность, достоверность; Безопасность.

Применение экспериментальных заданий на уроках и во внеурочное время в качестве домашних заданий привело к повышению познавательной активности учащихся, повысило интерес к изучению физики. Вопросы Варианты ответов 8А класс 8Б класс Оцени твое отношение к предмету. а) не люблю предмет, 5% 4% б) интересуюсь, 85% 68% в) люблю предмет, хочу узнать больше. 10% 28% 2. Как часто ты занимаешься предметом? а) регулярно 5% 24% б) иногда 90% 76% в) очень редко 5% 0% 3. Читаешь ли ты дополнительную литературу по предмету? а) постоянно 10% 8% б) иногда 60% 63% в) мало, совсем не читаю 30% 29% 4. Тебе хочется знать, понять, докопаться до сути? а) почти всегда 40% 48% б) иногда 55% 33% в) очень редко 5% 19% 5. Хотел бы ты заниматься экспериментами во внеурочное время? а) да, очень 60% 57% б) иногда 20% 29% в) достаточно урока 20% 14%

Мониторинг качества обученности учащихся (учитель Петросян О.Р.)

Участие в олимпиадах и конкурсах по физике за 4 года

«Детство ребенка - не период подготовки к будущей жизни, а полноценная жизнь. Следовательно, образование должно базироваться не на тех знаниях, которые когда-нибудь в будущем ему пригодятся, а на том, что остро необходимо ребенку сегодня, на проблемах его реальной жизни» (Джон Дьюи). Систематическая и целенаправленная работа по формированию умений и навыков экспериментальной работы дает возможность уже на начальном этапе изучения физики приобщить обучающихся к научному поиску, научить излагать свои мысли, вести публичную дискуссию, отстаивать собственные выводы. А значит сделать обучение более эффективным и отвечающим современным требованиям.

"Будьте сами первооткрывателями, исследователями! Если не будет огонька у вас, вам никогда не зажечь его в других!" Сухомлинский В.А. Спасибо за внимание!


Значение и виды самостоятельного эксперимента учащихся по физике. При обучении физике в средней школе экспериментальные умения формируются при выполнении самостоятельных лабораторных работ.

Обучение физике нельзя представить только в виде теоретических занятий, даже если учащимся на занятиях показываются демонстрационные физические опыты. Ко всем видам чувственного восприятия надо обязательно добавить на занятиях “работу руками”. Это достигается при выполнении учащимися лабораторного физического эксперимента, когда они сами собирают установки, проводят измерения физических величин, выполняют опыты. Лабораторные занятия вызывают у учащихся очень большой интерес, что вполне естественно, так как при этом происходит познание учеником окружающего мира на основе собственного опыта и собственных ощущений.

Значение лабораторных занятий по физике заключается в том, что у учащихся формируются представления о роли и месте эксперимента в познании. При выполнении опытов у учащихся формируются экспериментальные умения, которые включают в себя как интеллектуальные умения, так и практические. К первой группе относятся умения: определять цель эксперимента, выдвигать гипотезы, подбирать приборы, планировать эксперимент, вычислять погрешности, анализировать результаты, оформлять отчет о проделанной работе. Ко второй группе относятся умения: собирать экспериментальную установку, наблюдать, измерять, экспериментировать.

Кроме того, значение лабораторного эксперимента заключается в том, что при его выполнении у учащихся вырабатываются такие важные личностные качества, как аккуратность в работе приборами; соблюдение чистоты и порядка на рабочем месте, в записях, которые делаются во время эксперимента, организованность, настойчивость в получении результата. У них формируется определенная культура умственного и физического труда.

В практике обучения физике в школе сложились три вида лабораторных занятий:

Фронтальные лабораторные работы по физике;

Физический практикум;

Домашние экспериментальные работы по физике.

Фронтальные лабораторные работы - это такой вид практических работ, когда все учащиеся класса одновременно выполняют однотипный эксперимент, используя одинаковое оборудование. Фронтальные лабораторные работы выполняются чаще всего группой учащихся, состоящей из двух человек, иногда имеется возможность организовать индивидуальную работу. Соответственно в кабинете должно быть 15-20 комплектов приборов для фронтальных лабораторных работ. Общее количество таких приборов будет составлять около тысячи штук. Названия фронтальных лабораторных работ приводятся в учебных программах. Их достаточно много, они предусмотрены практически по каждой теме курса физики. Перед проведением работы учитель выявляет подготовленность учащихся к сознательному выполнению работы, определяет вместе с ними ее цель, обсуждает ход выполнения работы, правила работы с приборами, методы вычисления погрешностей измерений. Фронтальные лабораторные работы не очень сложны по содержанию, тесно связаны хронологически с изучаемым материалом и рассчитаны, как правило, на один урок. Описания лабораторных работ можно найти в школьных учебниках по физике.

Физический практикум проводится с целью повторения, углубления, расширения и обобщения полученных знаний из разных тем курса физики; развития и совершенствования у учащихся экспериментальных умений путем использования более сложного оборудования, более сложного эксперимента; формирования у них самостоятельности при решении задач, связанных с экспериментом. Физический практикум не связан по времени с изучаемым материалом, он проводится, как правило, в конце учебного года, иногда - в конце первого и второго полугодий и включает серию опытов по той или иной теме. Работы физического практикума учащиеся выполняют в группе из 2-4 человек на различном оборудовании; на следующих занятиях происходит смена работ, что делается по специально составленному графику. Составляя график, учитывают число учащихся в классе, число работ практикума, наличие оборудования. На каждую работу физического практикума отводятся два учебных часа, что требует введения в расписание сдвоенных уроков по физике. Это представляет затруднения. По этой причине и из-за недостатка необходимого оборудования практикуют одночасовые работы физического практикума. Следует отметить, что предпочтительными являются двухчасовые работы, поскольку работы практикума сложнее, чем фронтальные лабораторные работы, выполняются они на более сложном оборудовании, причем доля самостоятельного участия учеников значительно больше, чем в случае фронтальных лабораторных работ. Физические практикумы предусмотрены в основном программами 9-11 классов. В каждом классе на практикум отводится примерно 10 часов учебного времени. К каждой работе учитель должен составить инструкцию, которая должна содержать: название, цель, список приборов и оборудования, краткую теорию, описание неизвестных учащимся приборов, план выполнения работы. После проведения работы учащиеся должны сдать отчет, который должен содержать: название работы, цель работы, список приборов, схему или рисунок установки, план выполнения работы, таблицу результатов, формулы, по которым вычислялись значения величин, вычисления погрешностей измерений, выводы. При оценке работы учащихся в практикуме следует учитывать их подготовку к работе, отчет о работе, уровень сформированности умений, понимание теоретического материала, используемых методов экспериментального исследования.

Домашние экспериментальные работы. Домашние лабораторные работы - простейший самостоятельный эксперимент, который выполняется учащимися дома, вне школы, без непосредственного контроля со стороны учителя за ходом работы.

Главные задачи экспериментальных работ этого вида:

Формирование умения наблюдать физические явления в природе и в быту;

Формирование умения выполнять измерения с помощью измерительных средств, использующихся в быту;

Формирование интереса к эксперименту и к изучению физики;

Формирование самостоятельности и активности.

Домашние лабораторные работы могут быть классифицированы в зависимости от используемого при их выполнении оборудования:

Работы, в которых используются предметы домашнего обихода и подручные материалы (мерный стакан, рулетка, бытовые весы и т.п.);

Работы, в которых используются самодельные приборы (рычажные весы, электроскоп и др.);

Работы, выполняемые на приборах, выпускаемых промышленностью.

Классификация взята из .

В своей книге С.Ф. Покровский показал, что домашние опыты и наблюдения по физике, проводимые самими учащимися: 1)дают возможность нашей школе расширить область связи теории с практикой; 2)развивают у учащихся интерес к физике и технике; 3)будят творческую мысль и развивают способность к изобретательству; 4)приучают учащихся к самостоятельной исследовательской работе; 5)вырабатывают у них ценные качества: наблюдательность, внимание, настойчивость и аккуратность; 6)дополняют классные лабораторные работы тем материалом, который никак не может быть выполнен в классе (ряд длительных наблюдений, наблюдение природных явлений и прочее), и 7)приучают учащихся к сознательному, целесообразному труду.

Домашние опыты и наблюдения по физике имеют свои характерные особенности, являясь чрезвычайно полезным дополнением к классным и вообще школьным практическим работам.

Уже достаточно давно рекомендовано учащимся иметь домашнюю лабораторию. в нее включались в первую очередь линейки, мензурка, воронка, весы, разновесы, динамометр, трибометр, магнит, часы с секундной стрелкой, железные опилки, трубки, провода, батарейка, лампочка. Однако, несмотря на то, что в набор включены весьма простые приборы, это предложение не получило распространения.

Для организации домашней экспериментальной работы учащихся можно использовать так называемую мини-лабораторию, предложенную учителем-методистом Е.С. Объедковым, в которую входят многие предметы домашнего обихода (бутылочки от пенициллина, резинки, пипетки, линейки и т.п.) что доступно практически каждому школьнику. Е.С. Объедков разработал весьма большое число интересных и полезных опытов с этим оборудованием.

Появилась также возможность использовать ЭВМ для проведения в домашних условиях модельного эксперимента. Понятно, что соответствующие задания могут быть предложены только тем учащимся, у которых дома есть компьютер и програмно-педагогические средства.

Чтобы ученики хотели учиться, необходимо чтобы процесс обучения был интересен для них. Что же интересно ученикам? Для получения ответа на этот вопрос обратимся к выдержкам из статьи И.В. Литовко, МОС(П)Ш №1 г. Свободного “Домашние экспериментальные задания как элемент творчества учащихся”, опубликованной в интернете. Вот что пишет И.В. Литовко:

“Одна из важнейших задач школы - научить учащихся учиться, укрепить их способность к саморазвитию в процессе образования, для чего необходимо сформировать у школьников соответствующие устойчивые желания, интересы, умения. Большую роль в этом играют экспериментальные задания по физике, представляющие по своему содержанию кратковременные наблюдения, измерения и опыты, тесно связанные с темой урока. Чем больше наблюдений физических явлений, опытов проделает учащийся, тем лучше он усвоит изучаемый материал.

Для изучения мотивации учащихся им были предложены следующие вопросы и получены результаты:

Что вам нравится при изучении физике ?

а)решение задач -19%;

б)демонстрация опытов -21%;

Домашние экспериментальные задания

Задание 1.

Возьмите длинную тяжелую книгу, перевяжите ее тонкой ниткой и

прикрепите к нитке резиновую нить длиной 20 см.

Положите книгу на стол и очень медленно начинайте тянуть за конец

резиновой нити. Попытайтесь измерить длину растянувшейся резиновой нити в

момент начала скольжения книги.

Измерьте длину растянувшейся нитки при равномерном движении книги.

Положите под книгу две тонкие цилиндрические ручки (или два

цилиндрических карандаша) и так же тяните за конец нити. Измерьте длину

растянувшейся нити при равномерном движении книги на катках.

Сравните три полученных результата и сделайте выводы.

Примечание. Следующее задание является разновидностью предыдущего. Оно

так же направлено на сравнение трения покоя, трения скольжения и трения

Задание 2.

Положите на книгу шестигранный карандаш параллельно ее корешку.

Медленно поднимайте верхний край книги до тех пор, пока карандаш не начнет

скользить вниз. Чуть уменьшите наклон книги и закрепите ее в таком

положении, подложив под нее что-нибудь. Теперь карандаш, если его снова

положить на книгу, съезжать не будет. Его удерживает на месте сила трения -

сила трения покоя. Но стоит эту силу чуть ослабить - а для этого достаточно

щелкнуть пальцем по книге, - и карандаш поползет вниз, пока не упадет на

стол. (Тот же опыт можно проделать, например, с пеналом, спичечным

коробком, ластиком и т.п.)

Подумайте, почему гвоздь легче вытащить из доски, если вращать его

вокруг оси?

Чтобы толстую книгу передвинуть по столу одним пальцем, надо приложить

некоторое усилие. А если под книгу положить два круглых карандаша или

ручки, которые будут в данном случае роликовыми подшипниками, книга легко

передвинется от слабого толчка мизинцем.

Проделайте опыты и сделайте сравнение силы трения покоя, силы трения

скольжения и силы трения качения.

Задание 3.

На этом опыте можно наблюдать сразу два явления: инерцию, опыты с

Возьмите два яйца: одно сырое, а другое сваренное вкрутую. Закрутите

оба яйца на большой тарелке. Вы видите, что вареное яйцо ведет себя иначе,

чем сырое: оно вращается значительно быстрее.

В вареном яйце белок и желток жестко связаны со своей скорлупой и

между собой т.к. находятся в твердом состоянии. А когда мы раскручиваем

сырое яйцо, то мы раскручиваем сначала лишь скорлупу, только потом, за счет

трения, слой за слоем вращение передается белку и желтку. Таким образом,

жидкие белок и желток своим трением между слоями тормозят вращение

скорлупы.

Примечание. Вместо сырого и вареного яиц можно закрутить две кастрюли,

в одной изкоторых вода, а в другой находится столько же по объему крупы.

Центр тяжести. Задание 1.

Возьмите два граненых карандаша и держите их перед собой параллельно,

положив на них линейку. Начните сближать карандаши. Сближение будет

происходить поочередными движениями: то один карандаш движется, тот другой.

Даже если вы захотите вмешаться в их движение, у вас ничего не получится.

Они все равно будут двигаться по очереди.

Как только на одном карандаше давление стало больше и трение настолько

второй карандаш может теперь двигаться под линейкой. Но через некоторое

время давление и над ним становится больше, чем над первым карандашом, и из-

за увеличения трения он останавливается. А теперь может двигаться первый

карандаш. Так, двигаясь по очереди, карандаши встретятся на самой середине

линейки у ее центра тяжести. В этом легко убедится по делениям линейки.

Этот опыт можно проделать и с палкой, держа ее на вытянутых пальцах.

Сдвигая пальцы, вы заметите, что они, тоже двигаясь поочередно, встретятся

под самой серединой палки. Правда, это лишь частный случай. Попробуйте

проделать то же самое с обычной половой щеткой, лопатой или граблями. Вы

увидите, что пальцы встретятся не на середине палки. Попытайтесь объяснить,

почему так происходит.

Задание 2.

Это старинный, очень наглядный опыт. Перочинный нож (складной) у вас,

наверное, карандаш тоже. Заточите карандаш, чтобы у него был острый конец,

и немного выше конца воткните полураскрытый перочинный нож. Поставьте

острие карандаша на указательный палец. Найдите такое положение

полураскрытого ножа на карандаше, при котором карандаш будет стоять на

пальце, слегка покачиваясь.

Теперь вопрос: где находится центр тяжести карандаша и перочинного

Задание 3.

Определите положение центра тяжести спички с головкой и без головки.

Поставьте на стол спичечный коробок на длинную узкую его грань и

положите на коробок спичку без головки. Эта спичка будет служить опорой для

другой спички. Возьмите спичку с головкой и уравновесьте ее на опоре так,

чтобы она лежала горизонтально. Ручкой отметьте положение центра тяжести

спички с головкой.

Соскоблите головку со спички и положите спичку на опору так, чтобы

отмеченная вами чернильная точка лежала на опоре. Это теперь вам не

удастся: спичка не будет лежать горизонтально, так как центр тяжести спички

переместился. Определите положение нового центра тяжести и заметьте, в

какую сторону он переместился. Отметьте ручкой центр тяжести спички без

Спичку с двумя точками принесите в класс.

Задание 4.

Определите положение центра тяжести плоской фигуры.

Вырежьте из картона фигуру произвольной (какой-либо причудливой) формы

и проколите в разных произвольных местах несколько отверстий (лучше, если

они будут расположены ближе к краям фигуры, это увеличит точность). Вбейте

в вертикальную стену или стойку маленький гвоздик без шляпки или иглу и

повесьте на него фигуру через любое отверстие. Обрати внимание: фигура

должна свободно качаться на гвоздике.

Возьмите отвес, состоящий из тонкой нити и груза, и перекиньте его

нить через гвоздик, чтобы он указывал вертикальное направление не

подвешенной фигуре. Отметьте на фигуре карандашом вертикальное направление

Снимите фигуру, повесьте ее за любое другое отверстие и снова при

помощи отвеса и карандаша отметьте на ней вертикальное направление нити.

Точка пересечения вертикальных линий укажет положение центра тяжести

данной фигуры.

Пропустите через найденный вами центр тяжести нить, на конце которой

сделан узелок, и подвесьте фигуру на этой нити. Фигура должна держаться

почти горизонтально. Чем точнее проделан опыт, тем горизонтальнее будет

держаться фигура.

Задание 5.

Определите центр тяжести обруча.

Возьмите небольшой обруч (например, пяльцы) или сделайте кольцо из

гибкого прутика, из узкой полоски фанеры или жесткого картона. Подвесьте

его на гвоздик и из точки привешивания опустите отвес. Когда нить отвеса

успокоится, отметьте на обруче точки ее прикосновения к обручу и между

этими точками натяните и закрепите кусок тонкой проволоки или лески

(натягивать надо достаточно сильно, но не настолько чтобы обруч менял свою

Подвесьте обруч на гвоздик за любую другую точку и проделайте то же

самое. Точка пересечения проволок или лесок и будет центром тяжести обруча.

Заметьте: центр тяжести обруча лежит вне вещества тела.

К месту пересечения проволок или лесок привяжите нить и подвесьте на

ней обруч. Обруч будет находится в безразличном равновесии, так как центр

тяжести обруча и точка его опоры (подвеса) совпадают.

Задание 6.

Вы знаете, что устойчивость тела зависит от положения центра тяжести и

от величины площади опоры: чем ниже центр тяжести и больше площадь опоры,

тем тело устойчивее.

Помня это, возьмите брусок или пустой коробок от спичек и, ставя его

поочередно на бумагу в клеточку на самую широкую, на среднюю и на самую

меньшую грань, обводите каждый раз карандашом, чтобы получить три разных

площади опоры. Подсчитайте размеры каждой площади в квадратных сантиметрах

и проставьте их на бумаге.

Измерьте и запишите высоту положения центра тяжести коробка для всех

трех случаев (центр тяжести спичечного коробка лежит на пересечении

диагоналей). Сделайте вывод, при каком положении коробок является наиболее

устойчивым.

Задание 7.

Сядьте на стул. Ноги поставьте вертикально, не подсовывая их под

сиденье. Сидите совершенно прямо. Попробуйте встать, не нагибаясь вперед,

не вытягивая руки вперед и не сдвигая ноги под сиденье. У вас ничего не

получится - встать не удастся. Ваш центр тяжести, который находится где-то

в середине вашего тела, не даст вам встать.

Какое же условие надо выполнить, чтобы встать? Надо наклониться вперед

или поджать под сиденье ноги. Вставая, мы всегда проделываем и то и другое.

При этом вертикальная линия, проходящая через ваш центр тяжести, должна

обязательно пройти хотя бы через одну из ступней ваших ног или между ними.

Тогда равновесие вашего тела окажется достаточно устойчивым, вы легко

сможете встать.

Ну, а теперь попробуйте встать, взяв в руки гантели или утюг. Вытяните

руки вперед. Возможно, удастся встать, не наклоняясь и не подгибая ноги под

Инерция. Задание 1.

Положите на стакан почтовую открытку, а на открытку положите монету

или шашку так, чтобы монета находилась над стаканом. Ударьте по открытке

щелчком. Открытка должна вылететь, а монета (шашка) упасть в стакан.

Задание 2.

Положите на стол двойной лист бумаги из тетради. На одну половину

листа положите стопку книг высотой не ниже 25см.

Слегка приподняв над уровнем стола вторую половину листа обеими

руками, стремительно дерните лист к себе. Лист должен освободиться из-под

книг, а книги должны остаться на месте.

Снова положите на лист книги и тяните его теперь очень медленно. Книги

будут двигаться вместе с листом.

Задание 3.

Возьмите молоток, привяжите к нему тонкую нить, но чтобы она

выдерживала тяжесть молотка. Если одна нитка не выдерживает, возьмите две

нитки. Медленно поднимите молоток вверх за нитку. Молоток будет висеть на

нитке. А если вы захотите его снова поднять, но уже не медленно, а быстрым

рывком, нитка оборвется (предусмотрите, чтобы молоток, падая, не разбил

ничего под собой). Инертность молотка настолько велика, что нитка не

выдержала. Молоток не успел быстро последовать за вашей рукой, остался на месте, и нить порвалась.

Задание 4.

Возьмите небольшой шарик из дерева, пластмассы или стекла. Сделайте из

плотной бумаги желобок, положите в него шарик. Быстро двигайте по столу

желобок, а затем внезапно его остановите. Шарик по инерции продолжит

движение и покатится, выскочив из желобка.

Проверьте, куда покатится шарик, если:

а) очень быстро потянуть желоб и резко остановить его;

б) тянуть желоб медленно и резко остановить.

Задание 5.

Разрежьте яблоко пополам, но не до самого конца, и оставьте его висеть

Теперь ударьте тупой стороной ножа с висящим сверху на нем яблоком по

чему-нибудь твердому, например по молотку. Яблоко, продолжая движение по

инерции, окажется перерезанным и распадется на две половинки.

То же самое получается, когда колют дрова: если не удалось

расколоть чурбак, его обычно переворачивают и что есть сил, ударяют обухом

топора о твердую опору. Чурбак, продолжая двигаться по инерции,

насаживается глубже на топор и раскалывается надвое.

Физике»

У читель физики :

Горшенёва Наталья Ивановна

2011 г
Роль эксперимента в обучении физике.

Уже в определении физики как науки заложено сочетание в ней как теоретической, так и практической частей. Очень важно, чтобы в процессе обучения физике учитель смог как можно полнее продемонстрировать своим ученикам взаимосвязь этих частей. Ведь когда учащиеся почувствуют эту взаимосвязь, то они смогут многим процессам, происходящим вокруг них в быту, в природе, дать верное теоретическое объяснение.

Без эксперимента нет, и не может быть рационального обучения физике; одно словесное обучение физике неизбежно приводит к формализму и механическому заучиванию. Первые мысли учителя должны быть направлены на то, чтобы учащийся видел опыт и проделывал его сам, видел прибор в руках преподавателя и держал его в своих собственных руках.

Учебный эксперимент - это средство обучения в виде специально организованных и проводимых учителем и учеником опытов.


Цели учебного эксперимента:

  • Решение основных учебно – воспитательных задач;

  • Формирование и развитие познавательной и мыслительной деятельности;

  • Политехническая подготовка;

  • Формирование мировоззрения учащихся.
Функции эксперимента:

  • Познавательная (осваиваются основы наук на практике);

  • Воспитывающая (формирование научного мировоззрения);

  • Развивающая (развивает мышление и навыки).

Виды физических экспериментов .

Какие формы обучения практического характера можно предложить в дополнение к рассказу преподавателя? В первую очередь , конечно, это наблюдение учениками за демонстрацией опытов, проводимых учителем в классе при объяснении нового материала или при повторении пройденного, так же можно предложить опыты, проводимые самими учащимися в классе во время уроков в процессе фронтальной лабораторной работы под непосредственным наблюдением учителя. Еще можно предложить: 1)опыты, проводимые самими учащимися в классе во время физического практикума; 2)опыты-демонстрации, проводимые учащимися при ответах; 3)опыты, проводимые учащимися вне школы по домашним заданиям учителя; 4)наблюдения кратковременных и длительных явлений природы, техники и быта, проводимые учащимися на дому по особым заданиям учителя.

Что можно сказать о приведенных выше формах обучения?

Демонстрационный эксперимент является одной из составляющих учебного физического эксперимента и представляет собой воспроизведение физических явлений учителем на демонстрационном столе с помощью специальных приборов. Он относится к иллюстративным эмпирическим методам обучения. Роль демонстрационного эксперимента в обучении определяется той ролью, которую эксперимент играет в физике-науке как источник знаний и критерий их истинности, и его возможностями для организации учебно-познавательной деятельности учащихся.

Значение демонстрационного физического эксперимента заключается в том, что:

Учащиеся знакомятся с экспериментальным методом познания в физике, с ролью эксперимента в физических исследованиях (в итоге у них формируется научное мировоззрение);

У учащихся формируются некоторые экспериментальные умения: наблюдать явления, выдвигать гипотезы, планировать эксперимент, анализировать результаты , устанавливать зависимости между величинами, делать выводы и т.п.

Демонстрационный эксперимент, являясь средством наглядности, способствует организации восприятия учащимися учебного материала, его пониманию и запоминанию; позволяет осуществить политехническое обучение учащихся; способствует повышению интереса к изучению физике и созданию мотивации учения. Но при проведении учителем демонстрационного эксперимента основную деятельность выполняют сам учитель и, в лучшем случае, один - два ученика, остальные учащиеся только пассивно наблюдают за опытом, проводимым учителем, сами при этом ничего не делают собственными руками. Следовательно, необходимо наличие самостоятельного эксперимента учащихся по физике.

Лабораторные занятия.

При обучении физике в средней школе экспериментальные умения формируются, когда они сами собирают установки, проводят измерения физических величин, выполняют опыты. Лабораторные занятия вызывают у учащихся очень большой интерес, что вполне естественно, так как при этом происходит познание учеником окружающего мира на основе собственного опыта и собственных ощущений.

Значение лабораторных занятий по физике заключается в том, что у учащихся формируются представления о роли и месте эксперимента в познании. При выполнении опытов у учащихся формируются экспериментальные умения, которые включают в себя как интеллектуальные умения, так и практические. К первой группе относятся умения: определять цель эксперимента, выдвигать гипотезы, подбирать приборы, планировать эксперимент, вычислять погрешности, анализировать результаты, оформлять отчет о проделанной работе . Ко второй группе относятся умения: собирать экспериментальную установку, наблюдать, измерять, экспериментировать.

Кроме того, значение лабораторного эксперимента заключается в том, что при его выполнении у учащихся вырабатываются такие важные личностные качества, как аккуратность в работе приборами; соблюдение чистоты и порядка на рабочем месте, в записях, которые делаются во время эксперимента, организованность, настойчивость в получении результата. У них формируется определенная культура умственного и физического труда.

В практике обучения физике в школе сложились три вида лабораторных занятий:

Фронтальные лабораторные работы по физике;

Физический практикум;

Домашние экспериментальные работы по физике.

Выполнение самостоятельных лабораторных работ.

Фронтальные лабораторные работы - это такой вид практических работ, когда все учащиеся класса одновременно выполняют однотипный эксперимент, используя одинаковое оборудование. Фронтальные лабораторные работы выполняются чаще всего группой учащихся, состоящей из двух человек, иногда имеется возможность организовать индивидуальную работу. Тут возникает сложность: не всегда в школьном кабинете физики есть достаточное количество комплектов приборов и оборудования для проведения таких работ. Старое оборудование приходит в негодность, а, к сожалению, не все школы могут позволить себе закупку нового. Да и от ограничения по времени никуда не денешься. А если у одной из бригад что-то не получается, не работает какой-то прибор или чего-либо не хватает, тогда они начинают просить о помощи учителя , отвлекая других от выполнения лабораторной работы.

В 9-11 классах проводится физический практикум.

Физический практикум проводится с целью повторения, углубления, расширения и обобщения полученных знаний из разных тем курса физики; развития и совершенствования у учащихся экспериментальных умений путем использования более сложного оборудования, более сложного эксперимента; формирования у них самостоятельности при решении задач, связанных с экспериментом. Проводится физический практикум, как правило, в конце учебного года, иногда - в конце первого и второго полугодий и включает серию опытов по той или иной теме. Работы физического практикума учащиеся выполняют в группе из 2-4 человек на различном оборудовании; на следующих занятиях происходит смена работ, что делается по специально составленному графику. Составляя график, учитывают число учащихся в классе, число работ практикума, наличие оборудования. На каждую работу физического практикума отводятся два учебных часа, что требует введения в расписание сдвоенных уроков по физике. Это представляет затруднения. По этой причине и из-за недостатка необходимого оборудования практикуют одночасовые работы физического практикума. Следует отметить, что предпочтительными являются двухчасовые работы, поскольку работы практикума сложнее, чем фронтальные лабораторные работы, выполняются они на более сложном оборудовании, причем доля самостоятельного участия учеников значительно больше, чем в случае фронтальных лабораторных работ.

К каждой работе учитель должен составить инструкцию, которая должна содержать: название, цель, список приборов и оборудования, краткую теорию, описание неизвестных учащимся приборов, план выполнения работы. После проведения работы учащиеся должны сдать отчет, который должен содержать: название работы, цель работы, список приборов, схему или рисунок установки, план выполнения работы, таблицу результатов, формулы, по которым вычислялись значения величин, вычисления погрешностей измерений, выводы. При оценке работы учащихся в практикуме следует учитывать их подготовку к работе, отчет о работе, уровень сформированности умений, понимание теоретического материала, используемых методов экспериментального исследования.

А что будет, если учитель предложит ученикам выполнить опыт или провести наблюдение вне школы, то есть дома или на улице? опыты, задаваемые на дом, должны не требовать применения каких-либо приборов и существенных материальных затрат. Это должны быть опыты с водой, воздухом, с предметами которые есть в каждом доме. Кто-то может усомниться в научной ценности таких опытов, конечно, она там минимальна. Но разве плохо, если ребенок сам может проверить открытый за много лет до него закон или явление? Для человечества пользы никакой, но какова она для ребенка! Опыт - задание творческое, делая что-либо самостоятельно, ученик, хочет он этого или нет, а задумается: как проще провести опыт, где встречался он с подобным явлением на практике, где еще может быть полезно данное явление. Здесь надо заметить то, чтобы дети научились отличать физические опыты от всяческих фокусов, не путать одно с другим.

Домашние экспериментальные работы. Домашние лабораторные работы - простейший самостоятельный эксперимент, который выполняется учащимися дома, вне школы, без непосредственного контроля со стороны учителя за ходом работы.

Главные задачи экспериментальных работ этого вида:

Формирование умения наблюдать физические явления в природе и в быту;

Формирование умения выполнять измерения с помощью измерительных средств, использующихся в быту;

Формирование интереса к эксперименту и к изучению физики;

Формирование самостоятельности и активности.

Домашние лабораторные работы могут быть классифицированы в зависимости от используемого при их выполнении оборудования:

Работы, в которых используются предметы домашнего обихода и подручные материалы (мерный стакан, рулетка, бытовые весы и т.п.);

Работы, в которых используются самодельные приборы (рычажные весы, электроскоп и др.);

Что необходимо ребенку, чтобы провести опыт дома? В первую очередь, наверное, это достаточно подробное описание опыта, с указанием необходимых предметов, где в доступной для ребенка форме сказано, что надо делать, на что обратить внимание. Кроме того, учитель обязан провести подробный инструктаж.

Требования, предъявляемые к домашним экспериментам. Прежде всего, это, конечно, безопасность. Так как опыт проводится учеником дома самостоятельно, без непосредственного контроля учителя, то в опыте не должно быть никаких химических веществ и предметов, имеющих угрозу для здоровья ребенка и его домашнего окружения. Опыт не должен требовать от ученика каких-либо существенных материальных затрат, при проведении опыта должны использоваться предметы и вещества, которые есть практически в каждом доме: посуда, банки, бутылки, вода, соль и так далее. Выполняемый дома школьниками эксперимент должен быть простым по выполнению и оборудованию, но, в то же время, являться ценным в деле изучения и понимания физики в детском возрасте, быть интересным по содержанию. Так как учитель не имеет возможности непосредственно контролировать выполняемый учащимися дома опыт, то результаты опыта должны быть соответствующим образом оформлены (примерно так, как это делается при выполнении фронтальных лабораторных работ). Результаты опыта, проведенного учениками дома, следует обязательно обсудить и проанализировать на уроке. Работы учащихся не должны быть слепым подражанием установившимся шаблонам, они должны заключать в себе широчайшее проявление собственной инициативы, творчества, исканий нового. На основе вышесказанного кратко сформулируем предъявляемые к домашним экспериментальным заданиям требования :

Безопасность при проведении;

Минимальные материальные затраты;

Простота по выполнению;

Легкость последующего контроля учителем;

Наличие творческой окраски.
Домашний эксперимент можно задавать после прохождения темы в классе. Тогда ученики увидят собственными глазами и убедятся в справедливости изученного теоретически закона или явления. При этом полученные теоретически и проверенные на практике знания достаточно прочно отложатся в их сознании.

А можно и наоборот, задать задание на дом, а после выполнения провести объяснение явления. Таким образом, можно создать у учащихся проблемную ситуацию и перейти к проблемному обучению, которое непроизвольно рождает у учащихся познавательный интерес к изучаемому материалу, обеспечивает познавательную активность учащихся в ходе обучения, ведет к развитию творческого мышления учеников. В таком случае, даже если школьники не смогут объяснить увиденное дома на опыте явление сами, то они будут с интересом слушать рассказ преподавателя.

Этапы проведения эксперимента:


  1. Обоснование постановки эксперимента.

  2. Планирование и проведение эксперимента.

  3. Оценка полученного результата.
Любой эксперимент должен начинаться с гипотезы, а заканчиваться выводом.


  1. Формулировка и обоснование гипотезы, которую можно положить в основу эксперимента.

  2. Определение цели эксперимента.

  3. Выяснение условий, необходимых для достижения поставленной цели эксперимента.

  4. Планирование эксперимента, включающего ответ на вопросы:

    • какие наблюдение провести

    • какие величины измерить

    • приборы и материалы, необходимые для проведения опытов

    • ход опытов и последовательность их выполнения

    • выбор формы записи результатов эксперимента

  5. Отбор необходимых приборов и материалов

  6. Сбор установки.

  7. Проведение опыта, сопровождаемое наблюдениями, измерениями и записью их результатов

  8. Математическая обработка результатов измерений

  9. Анализ результатов эксперимента, формулировка выводов
Общую структуру физического эксперимента можно представить в виде:

Проводя любой эксперимент, необходимо помнить о требованиях, предъявляемых к эксперименту.

Требования к эксперименту:


  • Наглядность;

  • Кратковременность;

  • Убедительность, доступность, достоверность;

  • Безопасность.

Кроме вышеперечисленных видов экспериментов, существуют мысленные, виртуальные эксперименты (см. Приложение), которые проводятся в виртуальных лабораториях и имеют большое значение в случае отсутствия оборудования.


Психологи отмечают, что сложный зрительный материал запоминается лучше, чем его описание. Поэтому демонстрация опытов запечатлевается лучше, чем рассказ учителя о физическом опыте.

Школа -это самая удивительная лаборатория, потому что в ней создается будущее! И какое оно будет, зависит от нас, учителей!

Я считаю, что если учитель в преподавании физики пользуется экспериментальным методом, при котором учащиеся систематически включаются в поиски путей решения вопросов и задач, то можно ожидать, что результатом обучения будет развитие разностороннего, оригинального, не скованного узкими рамками мышления. А - это путь к развитию высокой интеллектуальной активности обучаемых.

Приложение.
Классификация видов экспериментов .
Полевой

(экскурсии)


Домашний

Школьный


Мысленный

Реальный

Виртуальный

В зависимости от количества и размеров


Лаборатор
Практичес
демонстрационные

По месту проведения

По способу проведения

В зависимости от субъекта

Эксперимент

1.Пояснительная записка.

Обучение физике в старшей школе строится на базе курса физики основной школы при условии дифференциации. Содержание образования должно способствовать осуществлению разноуровневого подхода. Лицей № 44 нацелен на оптимальное развитие творческих способностей учащихся, проявляющих особый интерес в области физики; этот уровень преподавания осуществляется в классах с углубленным изучением физики.

Объектами изучения в курсе физики на доступном для учащихся уровне наряду с фундаментальными физическими понятиями и законами должны быть эксперимент как метод познания, метод построения моделей и метод их теоретического анализа. Выпускники лицея должны понимать, в чем суть моделей природных объектов (процессов) и гипотез, как делаются теоретические выводы, как экспериментально проверять модели, гипотезы и теоретические выводы.

В лицее количество часов по физике в углубленных классах не соответствует новому статусу физико-математического лицея: в 9 классах – 2 часа. В связи с этим предлагается уроки технологии в 9 классе (1 час в неделю с делением на две группы) заменить на практическую экспериментальную физику дополнительно к основным урокам по сетке часов.

Цель курса - предоставление учащимся возможности удовлетворить индивидуальный интерес к изучению практических приложений физики в процессе познавательной и творческой деятельности при проведении самостоятельных экспериментов и исследований.

Основная задача курса - помощь учащимся в обоснованном выборе профиля дальнейшего обучения.

Программа состоит из следующих частей: а) погрешности; б) лабораторные работы; в) экспериментальные работы; г) экспериментальные задачи; д) тестирование.

На элективных занятиях школьники на практике познакомятся с теми видами деятельности, которые являются ведущими во многих инженерных и технических профессиях, связанных с практическим применением физики. Опыт самостоятельного выполнения сначала простых физических экспериментов, затем заданий исследовательского и конструкторского типа позволит либо убедиться в правильности предварительного выбора, либо изменить свой выбор и попробовать себя в каком-то ином направлении.

При этом теоретические занятия целесообразны лишь на первом этапе при формировании группы и определении интересов и способностей учащихся.

Основными формами занятий должны стать практические работы учащихся в физической лаборатории и выполнение простых экспериментальных заданий в домашних условиях.

На практических занятиях при выполнении лабораторных работ учащиеся смогут приобрести навыки планирования физического эксперимента в соответствии с поставленной задачей, научатся выбирать рациональный метод измерений, выполнять эксперимент и обрабатывать его результаты. Выполнение практических и экспериментальных заданий позволит применить приобретенные навыки в нестандартной обстановке, стать компетентными во многих практических вопросах.

Все виды практических заданий рассчитаны на использование типового оборудования кабинета физики и могут выполняться в форме лабораторных работ или в качестве экспериментальных заданий по выбору.

Элективный курс направлен на воспитание у школьников уверенности в своих силах и умение использовать разнообразные приборы и устройства бытовой техники в повседневной жизни, а также на развитие интереса к внимательному рассмотрению привычных явлений, предметов. Желание понять, разобраться в сущности явлений, в устройстве вещей, которые служат человеку всю жизнь, неминуемо потребует дополнительных знаний, подтолкнет к самообразованию, заставит наблюдать, думать, читать, изобретать.

Методы измерения физических величин (2 часа).

Основные и производные физические величины и их измерения. Единицы и эталоны величин. Абсолютные и относительные погрешности прямых измерений. Измерительные приборы, инструменты, меры. Инструментальные погрешности и погрешности отсчета. Классы точности приборов. Границы систематических погрешностей и способы их оценки. Случайные погрешности измерений и оценка их границ.

Этапы планирования и выполнения эксперимента. Меры предосторожности при проведении эксперимента. Учет влияния измерительных приборов на исследуемый процесс. Выбор метода измерений и измерительных приборов.

Способы контроля результатов измерений. Запись результатов измерений. Таблицы и графики. Обработка результатов измерений. Обсуждение и представление полученных результатов.

Лабораторные работы (16 часов).

  1. Расчет погрешностей измерений физических величин.
  2. Изучение равноускоренного движения.
  3. Определение ускорения тела при равноускоренном движении.
  4. Измерение массы тела.
  5. Изучение второго закона Ньютона.
  6. Определение жесткости пружины.
  7. Определение коэффициента трения скольжения.
  8. Изучение движения тела, брошенного горизонтально.
  9. Изучение движения тела по окружности под действием нескольких сил.
  10. Выяснение условий равновесия тел под действием нескольких сил.
  11. Определение центра тяжести плоской пластины.
  12. Изучение закона сохранения импульса.
  13. Измерение КПД наклонной плоскости.
  14. Сравнение произведенной работы с изменением энергии тела.
  15. Изучение закона сохранения энергии.
  16. Измерение ускорения свободного падения с помощью маятника.

Экспериментальные работы (4 часа).

  1. Расчет средней и мгновенной скорости.
  2. Измерение скорости внизу наклонной плоскости.
  3. Расчет и измерение скорости шара, скатывающегося по наклонному желобу.
  4. Изучение колебаний пружинного маятника.

Экспериментальные задачи(10 часов).

  1. Решение экспериментальных задач 7 класса (2 часа).
  2. Решение экспериментальных задач 8 класса (2 часа).
  3. Решение экспериментальных задач 9 класса (2 часа).
  4. Решение экспериментальных задач при помощи компьютера (4 часа).

Тестированное задание (1 час).

Обобщающее занятие (1 час).

3.Аттестация учащихся.

Особенностям элективных занятий наиболее соответствует зачетная форма оценки достижений учащихся. Зачет по выполненной лабораторной работе целесообразно выставлять по представленному письменному отчету, в котором кратко описаны условия эксперимента. В систематизированном виде представлены результаты измерений и сделаны выводы.

По результатам выполнения творческих экспериментальных заданий, кроме письменных отчетов, полезно практиковать сообщения на общем занятии группы с демонстрацией выполненных экспериментов, изготовленных приборов. Для проведения общих итогов занятий всей группы возможно проведение конкурса творческих работ. На этом конкурсе учащиеся смогут не только продемонстрировать экспериментальную установку в действие, но и рассказать о ее оригинальности и возможностях. Здесь особенно важно оформить свой доклад графиками, таблицами, кратко и эмоционально рассказать о самом главном. В этом случае появляется возможность увидеть и оценить свой труд и себя на фоне других интересных работ и таких же увлеченных людей.

Итоговый зачет учеником по всему элективному курсу можно выставлять, например, по таким критериям: выполнение не менее половины лабораторных работ; выполнение не менее одного экспериментального задания исследовательского или конструкторского типа; активное участие в подготовке и проведении семинаров, дискуссий, конкурсов.

Предлагаемые критерии оценки достижения учащихся могут служить лишь ориентиром, но не являются обязательными. На основе своего опыта учитель может устанавливать иные критерии.

4. Литература:

  1. Демонстрационный эксперимент по физике в средней школе./Под ред. А. А. Покров
    ского. Ч. 1.- М.:Просвещение,1978.
  2. Методика преподавания физики в 7-11 классах средней школы./Под редакцией В.П.
    Орехова и А.В. Усовой. - М.:Просвещение,1999.
  3. Мартынов И.М., Хозяинова Э.Н. Дидактический материал по физике. 9 класс. - М.:
    Просвещение,1995.
  4. В.А.Буров, А.И.Иванов, В.И.Свиридов. Фронтальные экспериментальные задания по
    физике.9 класс.– М: Просвещение.1988.
  5. Рымкевич А.П., Рымкевич П.А. Сборник задач по физике для 9 – 11 классов. – М.: Про
    свещение, 2000.
  6. Степанова Г.Н. Сборник задач по физике: Для 9-11 классов общеобразовательных уч
    реждений. - М.: Просвещение,1998.
  7. Городецкий Д.Н., Пеньков И.А. Проверочные работы по физике. – Минск “Вышэйш
    школа”, 1987
  8. В.А.Буров,С.Ф.Кабанов, В.И.Свиридов. “Фронтальные экспериментальные задания по
    физике”. – М: Просвещение.1988
  9. Кикоин И.К.,Кикоин А.К.Физика: Учебник для 10 классов – М.: Просвещение, 2003

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ ПО ФИЗИКЕ В 9 В КЛАССЕ

Элективный курс: “Практическая и экспериментальная физика”

(углубленное изучение - 34 часа)

Ступень – третья

Уровень – углубленный

Вид урока Часы Содержание урока Д/з
1 Лекция Техника безопасности. Конспект
2 Лекция Погрешности измерений физических величин. Конспект
3 Лабораторная работа № 1 Расчет погрешностей измерений физических величин Закончить расчеты
4 задачи
5 Экспериментальная работа Расчет средней и мгновенной скорости Закончить расчеты
6 Лабораторная работа № 2 Изучение равноускоренного движения Закончить расчеты
7 Лабораторная работа № 3. 1ч. Определение ускорения тела при равноускоренном движении. Закончить расчеты
8 Экспериментальная работа 1ч. Измерение скорости внизу наклонной плоскости. Закончить расчеты
9 Лабораторная работа № 4 Измерение массы тел Закончить расчеты
10 Лабораторная работа № 5 Изучение второго закона Ньютона Закончить расчеты
11 Лабораторная работа № 6 1ч. Определение жесткости пружины. Закончить расчеты
12 Лабораторная работа № 7 1ч. Определение коэффициента трения скольжения. Закончить расчеты
13 Лабораторная работа № 8 1ч. Изучение движения тела, брошенного горизонтально. Закончить расчеты
14 Лабораторная работа № 9 1ч. Изучение движения тела по окружности под действием нескольких сил”. Закончить расчеты
15 Решение экспериментальных задач Решение экспериментальных задач 7 класса задачи
16 Лабораторная работа № 10 1ч. Выяснение условий равновесия тел под действием нескольких сил. Закончить расчеты
17 Лабораторная работа № 11 1ч. Определение центра тяжести плоской пластины. Закончить расчеты
18 Решение экспериментальных задач задачи
19 Решение экспериментальных задач Решение экспериментальных задач 8 класса задачи
20 Лабораторная работа № 12 Изучение закона сохранения импульса Закончить расчеты
21 Лабораторная работа № 13 Измерение КПД наклонной плоскости Закончить расчеты
22 Лабораторная работа №14 1ч. Сравнение произведенной работы с изменением энергии тела” Закончить расчеты
23 Лабораторная работа № 15 Изучение закона сохранения энергии Закончить расчеты
24 Экспериментальная работа Расчет и измерение скорости шара, скатывающегося по наклонному желобу Закончить расчеты
25 Решение экспериментальных задач Задачи
26 Решение экспериментальных задач Решение экспериментальных задач 9 класса задачи
27 Экспериментальная работа Изучение колебаний пружинного маятника Закончить расчеты
28 Лабораторная работа № 16 Измерение ускорения свободного падания с помощью маятника Закончить расчеты
29 Решение экспериментальных задач 9 класса Закончить расчеты
30 Решение экспериментальных задач с помощью компьютера Решение экспериментальных задач с помощью компьютера Закончить расчеты
31 Решение экспериментальных задач с помощью компьютера Решение экспериментальных задач с помощью компьютера Закончить расчеты
32 Решение экспериментальных задач с помощью компьютера Решение экспериментальных задач с помощью компьютера Закончить расчеты
33 Тестированное задание Тест
34 Обобщающее занятие Подведение итогов и задачи на следующий год

ЛИТЕРАТУРА:

  1. Демонстрационный эксперимент по физике в средней школе./Под ред. А. А. Покровского. Ч. 1.- М.:Просвещение,1978.
  2. Методика преподавания физики в 7-11 классах средней школы./Под редакцией В.П. Орехова и А.В. Усовой. - М.:Просвещение,1999.
  3. Енохович А.С. Справочник по физике. - М.: Просвещение, 1978.
  4. Мартынов И.М., Хозяинова Э.Н. Дидактический материал по физике. 9 класс. - М.: Просвещение,1995.
  5. Скрелин Л.И. Дидактический материал по физике. 9 класс. – М.: Просвещение, 1998.
  6. Хрестоматия по физике /Под ред. Б.И. Спасского. – М.: Просвещение, 1982.
  7. Рымкевич А.П., Рымкевич П.А. Сборник задач по физике для 9 – 11 классов. – М.: Просвещение, 2000.
  8. Степанова Г.Н. Сборник задач по физике: Для 9-11 классов общеобразовательных учреждений. - М.: Просвещение,1998.
  9. Городецкий Д.Н., Пеньков И.А. Проверочные работы по физике. – Минск “Вышэйшая школа”, 1987.

Приложение 1

Урок № 1: “Измерение физических величин и оценка погрешностей измерения”.

Цели урока: 1. Познакомить учащихся с математической обработкой результатов измерения и научить представлять экспериментальные данные;

2. Развитие вычислительных способностей, памяти и внимания.

Ход урока

Результаты любого физического эксперимента необходимо уметь проанализировать. Это значит, что в лаборатории необходимо научиться не только измерять различные физические величины, но и проверять и находить связь между ними, сопоставлять результаты эксперимента с выводами теории.

Но что значит измерить физическую величину? Как быть, если искомую величину нельзя измерить непосредственно и ее значение находится по значению других величин?

Под измерением понимают сравнение измеряемой величины с другой величиной, принятой за единицу измерения.

Измерение подразделяют на прямые и косвенные.

При прямых измерениях определяемую величину сравнивают с единицей измерения непосредственно или при помощи измерительного прибора, проградуированного в соответствующих единицах.

При косвенных измерениях искомая величина определяется (вычисляется) из результатов прямых измерений других величин, которые связаны с измеряемой величиной определенной функциональной зависимостью.

При измерении любой физической величины обычно приходится выполнять три последовательные операции:

  1. Выбор, проверку и установку приборов;
  2. Наблюдение показаний приборов и отсчет;
  3. Нычисление искомой величины из результатов измерений, проведение оценки погрешностей.

Погрешности результатов измерений.

Истинное значение физической величины обычно абсолютно точно определить невозможно. Каждое измерение дает значение определяемой величины х с некоторой погрешностью?х. Это значит, что истинное значение лежит в интервале

х изм - dх < х ист < х изм + dх, (1)

где х изм - значение величины х, полученная при измерении; ?х характеризует точность измерения х. Величину?х называют абсолютной погрешностью, с которой определяется х.

Все погрешности подразделяют на систематические, случайные и промахи(ошибки). Причина возникновения погрешностей самые разнообразные. Понять возможные причины погрешностей и свести их к минимуму - это и означает грамотно поставить эксперимент. Ясно, что это непростая задача.

Систематической называют такую погрешность, которая остается постоянной или закономерно изменяется при повторных измерениях одной о той же величины.

Такие погрешности возникают в результате конструктивных особенностей измерительных приборов, неточности метода исследования, каких-либо упущений экспериментатора, а также при применении для вычислений неточных формул, округленных констант.

Измерительным прибором называют такое устройство, с помощью которого осуществляется сравнение измеряемой величины с единицей измерения.

В любом приборе заложена та или иная систематическая погрешность, которую невозможно устранить, но порядок которой можно учесть.

Систематические погрешности либо увеличивают, либо уменьшают результаты измерений, то есть эти погрешности характеризуются постоянством знака.

Случайные погрешности-ошибки, появление которых не может быть предупреждено.

Поэтому они могут оказать определенное влияние на отдельное измерение, но при многократных измерениях они подчиняются статистическим законам и их влияние на результаты измерений можно учесть или значительно уменьшить.

Промахи и грубые погрешности - чрезмерно большие ошибки, явно искажающие результат измерения.

Этот класс погрешностей вызван чаще всего неправильными действиями наблюдателя. Измерения, содержащие промахи и грубые погрешности, следует отбрасывать.

Измерения могут быть проведены с точки зрения их точности техническим и лабораторным методами.

В этом случае удовлетворяются такой точностью, при которой погрешность не превышает некоторого определенного, наперед заданного значения, определяемого погрешностью примененной измерительной аппаратуры.

При лабораторных методах измерений требуется более точно указать значение измеряемой величины, чем это допускает однократное ее измерение техническим методом.

Тогда делают несколько измерений и вычисляют среднее арифметическое полученных значений, которое принимают за наиболее достоверное значение измеряемой величины. Затем производят оценку точности результата измерения (учет случайных погрешностей).

Из возможности проведения измерений двумя методами вытекает и существование двух методов оценки точности измерений: технического и лабораторного.

Классы точности приборов.

Для характеристики большинства измерительных приборов часто используют понятие приведенной погрешности Е п (класса точности).

Приведенная погрешность это отношение абсолютной погрешности ?х к предельному значению х пр измеряемой величины (то есть наибольшему ее значению, которое может быть измерено по шкале приборов).

Приведенная погрешность, являясь по существу относительной погрешностью, выражается в процентах:

Е п = /dх/ х пр /*100%

По приведенной погрешности приборы разделяют на семь классов: 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4.

Приборы класса точности 0,1; 0,2; 0,5 применяют для точных лабораторных измерений и называют прецизионными.

В технике применяют приборы классов 1, 0; 1,5; 2,5 и 4 (технические). Класс точности прибора указывают на шкале прибора. Если на шкале такого обозначения нет, но данный прибор внеклассный, то есть его приведенная погрешность более 4%. В тех случаях, когда на приборе класс точности не указан, абсолютная погрешность принимается равной половине цены наименьшего деления.

Так, при измерении линейкой, наименьшее деление которой 1 мм, допускается ошибка до 0,5 мм. Для приборов, оснащенных нониусом, за приборную погрешность принимают погрешность, определяемую нониусом (для штангенциркуля-0,1 мм или 0,05 мм; для микрометра-0,01 мм).

Приложение 2

Лабораторная работа: “Измерение КПД наклонной плоскости”.

Оборудование: деревянная доска, деревянный брусок, штатив, динамометр, линейка измерительная.

Задание.Исследуйте зависимость КПД наклонной плоскости и выигрыш в силе, получаемого с ее помощью от угла наклона плоскости к горизонту.

КПД любого простого механизма равен отношению полезной работы А пол, к совершенной работе А сов и выражается в процентах:

n = А пол / А сов *100% (1).

При отсутствии трения КПД простого механизма, в том числе и наклонной плоскости, равен единице. В этом случае совершенная работа А сов силы F т, приложенной к телу и направленной вверх вдоль наклонной плоскости, равна полезной работе А пол.

А пол = А сов.

Обозначив путь, пройденный телом вдоль наклонной плоскости буквой S , высоту подъема? , получим F*S=hgm.

При этом выигрыш в силе будет равен: к = gm/F=l/h.

В реальных условиях действие силы трения снижает КПД наклонной плоскости и уменьшает выигрыш в силе.

Для определения КПД наклонной плоскости выигрыша в силе, полученного с ее помощью, следует использовать выражение:

n = hgm/ F т l*100% (2), к= gm/F т (3).

Целью работы является измерить КПД наклонной плоскости и выигрыш в силе при разных углах? ее наклона к горизонту и объяснить полученный результат.

Порядок выполнения работы.

1. Соберите установку по рис1. Измерьте высоту? и длину l наклонной плоскости (рис.2).

2. Вычислите максимально возможное значение выигрыша в силе, получаемое при заданном наклоне плоскости (a=30).

3. Положите брусок на наклонную плоскость. Прикрепив к нему динамометр, равномерно тяните его вверх вдоль наклонной плоскости. Измерьте силу тяги F т.

4. Измерьте с помощью динамометра силу тяжести mg бруска и найдите экспериментальное значение выигрыша в силе, полученного с помощью наклонной плоскости: к= gm/F т.

5. Вычислите КПД наклонной плоскости при заданном угле ее наклона

n = hgm/ F т l*100%

6. Повторите измерения при других углах наклона плоскости: a 2 =45?, a 3 =60 ?.

7. Результаты измерений и вычислений занесите в таблицу:

a m, кг h, м l, м F , Н к n ,%
1 30
2 45
3 60

8. Дополнительное задание

Полученную теоретическую зависимость n(a) и к(a) сравните с результатами эксперимента.

Контрольные вопросы.

  1. С какой целью применяют наклонную плоскость?
  2. Каким образом можно увеличить КПД наклонной плоскости?
  3. Каким образом можно увеличить выигрыш в силе, полученный с помощью наклонной плоскости?
  4. Зависит ли КПД наклонной плоскости от массы груза?
  5. Объясните качественно зависимость КПД наклонной плоскости и выигрыша в силе, получаемого с ее помощью, от угла наклона плоскости.

Приложение 3

Перечнь эксперементальных заданий для 7 класса

  1. Измерение размеров бруска.
  2. Измерение объема жидкости при помощи мензурки.
  3. Измерение плотности жидкости.
  4. Измерение плотности твердого тела.

Все работы проводятся с расчетом погрешностей и проверкой

размерностей.

  1. Измерение веса тела при помощи рычага.
  2. Вычисления выигрыша в силе инструментов, в которых применен (ножницы, кусачки, плоскогубцы)
  3. Наблюдение зависимости кинетической энергии тела от его скорости и массы.
  4. Выяснить от чего зависит сила трения экспериментально.

Перечень экспериментальных заданий для 8 класса

  1. Наблюдение действий электрического тока (теплового, химичеcкого, магнитного и по возможности физиологического).
  2. Расчет характеристик смешанного соединения проводников.
  3. Определение удельного сопротивления проводника с оценкой погрешностей.
  4. Наблюдение явления электромагнитной индукции.
  1. Наблюдение поглощения энергии при плавлении льда.
  2. Наблюдение выделения энергии при кристаллизации гипосульфита.
  3. Наблюдение поглощения энергии при испарении жидкостей.
  4. Наблюдение зависимости скорости испарения жидкости от рода жидкости, площади ее свободной поверхности, температуры и скорости удаления паров.
  5. Определение влажности воздуха в кабинете.

Перечень экспериментальных работ 9 класса

  1. 1.Измерение модулей угловой и линейной скоростей тела при равномерном движении по окружности.
  2. 2.Измерение модуля центростремительного ускорения тела при равномерном движении по окружности.
  3. 3.Наблюдение зависимости модулей сил натяжения нитей от угла между ними при постоянной равнодействующей силе.
  4. 4.Изучение третьего закона Ньютона.
  1. Наблюдение изменения модуля веса тела, движущегося с ускорением.
  2. Выяснение условий равновесия тела, имеющего ось вращения, при действии на него сил.
  3. Изучение закона сохранения импульса при упругом соударении тел.
  4. Измерение КПД подвижного блока.

Приложение 4

Экспериментальные задания

Измерение размеров бруска

Приборы и материалы (рис. 2): 1) линейка измерительная, 2) брусок деревянный.

Порядок выполнения работы:

  • Вычислите цену деления шкалы линейки.
  • Укажите предел этой шкалы.
  • Измерьте линейкой длину, ширину, высоту бруска.
  • Результаты всех измерений запишите в тетрадь.

Измерение объема жидкости при помощи мензурки

Приборы и материалы (рис. 3):

  • цилиндр измерительный (мензурка),
  • стакан с водой.

Порядок выполнения работы

  1. Вычислите цену деления шкалы мензурки.
  2. Зарисуйте в тетради часть шкалы мензурки и сделайте запись, поясняющую порядок вычисления цены деления шкалы.
  3. Укажите предел этой шкалы.
  4. Измерьте объем воды в стакане при помощи мензурки. " "
  5. Результат измерения запишите в тетрадь.
  6. Вылейте воду обратно в стакан.

Налейте в мензурку, например, 20 мл воды. После проверки учителем долейте в нее еще воды, доведя уровень до деления, например, 50 мл. Сколько воды было долито в мензурку

Измерение плотности жидкости

Приборы и материалы (рис. 14): 1) весы учебные, 2) гири, 3) цилиндр измерительный (мензурка), 4) стакан с водой.

Порядок выполнения работы

  1. Запишите:цену деления шкалы мензурки; верхний предел шкалы мензурки.
  2. Измерьте массу стакана с водой при помощи весов.
  3. Перелейте воду из стакана в мензурку и измерьте массу пустого стакана.
  4. Вычислите массу воды в мензурке.
  5. Измерьте объем воды в мензурке.
  6. Вычислите плотность воды.

Вычисление массы тела по его плотности и объему

Приборы и материалы (рис. 15): 1) весы учебные, 2) гири, 3) цилиндр измерительный (мензурка) с водой, 4)тело неправильной формы на нити, 5)таблица плотностей.

Порядок выполнения работы (Рис. 15)

  1. Измерьте объем тела при помощи мензурки.
  2. Вычислите массу тела.
  3. Проверьте результат вычисления массы тела при помощи весов.
  4. Результаты измерений и вычислений запишите в тетрадь.

Вычисление объема тела по его плотности и массе

Приборы и материалы (рис. 15): 1) весы учебные, 2) гири, 3) цилиндр измерительный (мензурка) с водой, 4) тело неправильной формы на нити, б) таблица плотностей.

Порядок выполнения работы

  1. Запишите вещество, из которого состоит тело неправильной формы.
  2. Найдите в таблице значение плотности этого вещества.
  3. Измерьте массу тела при помощи весов.
  4. Вычислите объем тела.
  5. Проверьте результат вычисления объема тела при помощи мензурки.
  6. Результаты измерений и вычислений запишите в тетрадь.

Изучение зависимости силы трения скольжения от рода трущихся поверхностей

Приборы и материалы (рис. 23): 1) динамометр, 2) трибометр 3) грузы с двумя крючками -2 шт., 4) лист бумаги, 5) лист наждачной бумаги.

Порядок выполнения работы

1. Подготовьте в тетради таблицу для записи результатов измерений:

2.Вычислите цену деления шкалы динамометра.
3.Измерьте силу трения скольжения бруска с двумя грузами:

4. Результаты измерений запишите в таблицу.

5. Ответьте на вопросы:

  1. Зависит ли сила трения скольжения:
    а) от рода трущихся поверхностей?
    б) от шероховатости трущихся поверхностей?
  2. Какими способами можно увеличить и уменьшить силу трения скольжения?(рис. 24):
    1) динамометр, 2) трибометр.

Изучение зависимости силы трения скольжения от силы давления и независимости от площади трущихся поверхностей

Приборы и материалы: 1) динамометр,2) трибометр;3) грузы с сдвумя крючками - 2 шт.

Порядок выполнения работы

  1. Вычислите цену деления шкалы динамометра.
  2. Положите на линейку трибометра брусок большой гранью, а на него - груз и измерьте силу трения скольжения бруска по линейке (рис. 24, а).
  3. Положите на брусок второй груз и снова измерьте силу трения скольжения бруска по линейке (рис. 24, б).
  4. Положите на линейку брусок меньшей гранью, поставьте на него опять два груза и снова измерьте силу трения скольжения бруска по линейке (рис. 24, в)
  5. 5. Ответьте на вопрос: зависит ли сила трения скольжения:
    а) от силы давления, и если зависит, то как?
    б) от площади трущихся поверхностей при постоянной силе давления?

Измерение веса тела при помощи рычага

Приборы и материалы: 1) рычаг-линейка, 2) линейка измерительная, 3) динамометр, 4) грузе двумя крючками, 5) цилиндр металлический, 6) штатив.

Порядок выполнения работы

  1. Подвесьте рычаг на оси, закрепленной в муфте штатива. Вращая гайки на концах рычага, установите его в горизонтальное положение.
  2. Подвесьте к левой части рычага металлический цилиндр, а к правой - груз, предварительно измерив динамометром его вес. Опытным путем добейтесь равновесия рычага с грузом.
  3. Измерьте плечи сил, действующих на рычаг.
  4. Используя правило равновесия рычага, вычислите вес металлического цилиндра.
  5. Измерьте вес металлического цилиндра при помощи динамометра и полученный результат сравните с расчетным.
  6. Результаты измерений и вычислений запишите в тетрадь.
  7. Ответьте на вопросы: изменится ли результат опыта, если:
  • рычаг уравновесить при другой длине плеч сил, действующих на него?
  • цилиндр подвесить к правой части рычага, а уравновешивающий груз - к левой?

Вычисление выигрыша в силе инструментов, в которых применен рычаг

"Приборы и материалы (рис. 45): 1) ножницы, 2) кусачки, 3) плоскогубцы, 4) линейка измерительная.

Порядок выполнения работы

  1. Ознакомьтесь с устройством предложенного вам инструмента, в котором применен рычаг: найдите ось вращения, точки приложения сил.
  2. Измерьте плечи сил.
  3. Вычислите примерно, в каких пределах может изменяться вы-
    игрыш в силе при пользовании данным инструментом.
  4. Результаты измерений и вычислений запишите в тетрадь.
  5. Ответьте на вопросы:
  • Как нужно располагать разрезаемый материал в ножницах, чтобы получить наибольший выигрыш в силе?
  • Как нужно держать кусачки в руке, чтобы получить наибольший выигрыш в силе?

Наблюдение зависимости кинетической энергии тела от его скорости и массы

Приборы и материалы (рис. 50): I) шары разной массы - 2 шт., 2) желоб, 3) брусок, 4) лента измерительная, 5) штатив. Рис. 50.

Порядок выполнения работы

  1. Укрепите жёлоб в наклонном положении при помощи штатива, как показано на рисунке 50. К нижнему концу желоба приставьте деревянный брусок
  2. Положите на середину желоба шарик меньшей массы и, отпустив его, наблюдайте, как шарик, скатившись с желоба и ударившись о деревянный брусок, передвинет последний на некоторое расстояние,совершая работу по преодолению силы трения.
  3. Измерьте расстояние, на которое переместился брусок.
  4. Повторите опыт, пустив шарик с верхнего конца желоба, и снова измерьте расстояние, на которое переместился брусок.
  5. Пустите с середины желоба шарик большей массы и снова измерьте перемещение бруска.

Измерение модулей угловой и линейной скоростей тела при равномерном движении по окружности

Приборы и материалы* 1) шарик диаметром 25 мм на нити длиной 200 мм, 2) линейка измерительная 30-35 см с миллиметровыми делениями, 3) часы с секундной стрелкой или метроном механический (один на класс).

Порядок выполнения работы

  1. Поднимите шарик за конец нити над линейкой и приведите его в равномерное движение по окружности так, чтобы он при вращении каждый раз проходил через нулевое и, например, десятое деление шкалы (рис. 9). Для получения устойчивого движения шарика локоть руки, удерживающей нить, поставьте на стол
  2. Измерьте время, например, 30 полных оборотов шарика.
  3. Зная время движения, число оборотов и радиус вращения, вычислите модули угловой и линейной скоростей шарика относительно стола.
  4. Результаты измерений и вычислений запишите в тетрадь.
  5. Ответьте на вопросы:

Измерение модуля центростремительного ускорения тела при равномерном движении по окружности

Приборы и материалы те же, что в задании 11.

Порядок выполнения работы

  1. Выполните пп. 1, 2 задания 11.
  2. Зная время движения, число оборотов и радиус вращения, вычислите модуль центростремительного ускорения шарика.
  3. Результаты измерений и вычислений запишите в тетрадь:
  4. Ответьте на вопросы:
  • Как изменится модуль центростремительного ускорения шарика, если число его оборотов в единицу времени увеличить в 2 раза?
  • Как изменится модуль центростремительного ускорения шарика, если радиус его вращения увеличить в 2 раза?

Наблюдение зависимости модулей сил натяжения нитей от угла между ними при постоянной равнодействующей силе

Приборы и материалы: 1) груз массой 100 г с двумя крючками, 2) динамометры учебные - 2 шт., 3) нить длиной 200 мм с петлями на концах.

Порядок выполнения работы


  • Чему равны модули сил натяжения нитей? Изменялись ли они во время опыта?
  • Чему равен модуль равнодействующей двух сил натяжения нитей? Изменялся ли он во время опыта?
  • Что можно сказать о зависимости модулей сил натяжения нитей от угла между ними при постоянной равнодействующей силе?

Изучение третьего закона Ньютона

Приборы и материалы: I) динамометры учебные - 2 шт., 2) нить длиной 200 мм с петлями на концах.

Порядок выполнения работы


  • С какой силой по модулю левый динамометр действует на правый? В какую сторону направлена эта сила? К какому динамометру она приложена?
  • С какой силой по модулю правый динамометр действует на левый? В какую сторону направлена эта сила? К какому динамометру она приложена?

3. Увеличьте взаимодействие динамометров. Заметьте их новые показания.

4. Соедините динамометры нитью и натяните ее.

5. Ответьте на вопросы:

  • С какой силой по модулю левый динамометр действует на нить?
  • С какой силой по модулю правый динамометр действует на нить?
  • С какой силой по модулю растягивается нить?

6. Сделайте общий вывод из проделанных опытов.

Наблюдение изменения модуля веса тела, движущегося с ускорением

Приборы и материалы: 1) динамометр учебный, 2) груз массой 100 г с двумя крючками, 3) нить длиной 200 мм с петлями на концах.

Порядок выполнения работы

  • Изменялась ли скорость движения груза при его движении вверх и вниз?
  • Как изменялся модуль веса груза при его ускоренном движении вверх и вниз?

4. Поставьте динамометр на край стола. Отклоните груз в сторону на некоторый угол и отпустите (рис. 18). Наблюдайте за показаниями динамо метра во время колебаний груза.

5. Ответьте на вопросы:

  • Изменяется ли скорость груза при его колебаниях?
  • Изменяются ли ускорение и вес груза при его колебаниях?
  • Как изменяются центро стремительное ускорение и вес груза при его колебаниях?
  • В каких точках траектории центростремительное ускорение и вес груза по модулю наибольшие, в каких наименьшие? Рис 18.

Выяснение условий равновесия тела, имеющего ось вращения, при действии на него сил

Приборы и материалы: 1) лист картона размером 150Х 150 мм с,вумя нитяными петлями, 2) динамометры учебные-2 шт., 3) лист картона размером 240X340 Мм с вбитым гвоздем, 4) угольник ученический, 5) линейка измерительная 30-35 см с миллиметровыми делениями, 6) карандаш.

Порядок выполнения работы

1. Наденьте на гвоздь лист картона. Зацепите динамометры за петли, натяните их с силами примерно 2 и 3 Н и расположите петли под углом 100-120° друг к другу, как показано на рисунке 27. Убедитесь, что лист картона при его отклонении в сторону возвращается в состояние

Рис. 27. Измерьте модули приложенных сил (силой тяжести картона пренебрегите).

2. Ответьте на вопросы:

  • Сколько сил действует на картон?
  • Чему равен модуль равнодействующей приложенных к картону сил?

3. На листе картона проведите отрезки прямых линий, вдоль которых действуют силы, и при помощи угольника постройте плечи этих сил, как показано на рисунке 28.

4. Измерьте плечи сил.

5. Вычислите моменты действующих сил и их алгебраическую сумму. При каком условии тело с закрепленной осью вращения находится в состоянии равновесия? Рис. 28. Ответ запишите в тетрадь.

Изучение закона сохранения импульса при упругом соударении тел

Приборы и материалы: 1) шарики диаметром 25 мм - 2 шт., 2) нить длиной 500 мм, 3) штатив для фронтальных работ.

Порядок выполнения работы

  • Чему равен общий импульс шариков до взаимодействия?
  • Одинаковые ли импульсы по модулю приобрели шарики после взаимодействия?
  • Чему равен общий импульс шариков после взаимодействия?

4. Отпустите отведенный шарик и заметьте отклонения шариков после удара. Опыт повторите 2-3 раза.Отклоните один из шариков на 4-5 см от положения равновесия, а второй оставьте в покое.

5. Ответьте на вопросы п. 3.

6. Сделайте вывод из проделанных опытов

Измерение КПД подвижного блока

Приборы и материалы: 1) блок, 2) динамометр учебный, 3) лента измерительная с сантиметровыми делениями, 4) грузы массой по 100 г с двумя крючками - 3 шт., 5) штатив для фронтальных работ, 6) нить длиной 50 см с петлями на концах.

Порядок выполнения работы

  1. Соберите установку с подвижным блоком, как показано на рисунке 42. Через блок перебросьте нить. Один конец нити зацепите за лапку штатива, второй - за крючок динамометра. К обойме блока подвесьте три груза массой по 100 г.
  2. Возьмите динамометр в руку, расположите его вертикально так, чтобы блок с грузами повис на нитях, и измерьте модуль силы натяжения нити.
  3. Поднимите равномерно грузы на некоторую высоту и измерьте модули перемещений грузов и динамометра относительно стола.
  4. Вычислите полезную и совершенную работы относительно стола.
  5. Вычислите КПД подвижного блока.
  6. Ответьте на вопросы:
  • Какой выигрыш в силе дает подвижный блок?
  • Можно ли при помощи подвижного блока получить выигрыш в работе?
  • Как повысить КПД подвижного блока?

Приложение5

Требования к уровню подготовки выпускников основной школы.

1. Владеть методами научного познания.

1.1. Собирать установки для эксперимента по описанию, рисунку или схеме и проводить наблюдения изучаемых явлений.

1.2. Измерять: температуру, массу, объем, силу (упругости, тяжести, трения скольжения), расстояние, промежуток времени, силу тока, напряжение, плотность, период колебаний маятника, фокусное расстояние собирающей линзы.

1.3. Представлять результаты измерений в виде таблиц, графиков и выявлять эмпирические закономерности:

  • изменения координаты тела от времени;
  • силы упругости от удлинения пружины;
  • силы тока в резисторе от напряжения;
  • массы вещества от его объема;
  • температуры тела от времени при теплообмене.

1.4. Объяснять результаты наблюдений и экспериментов:

  • смену дня и ночи в системе отсчета, связанной с Землей, и в системе отсчета, связанной с Солнцем;
  • большую сжимаемость газов;
  • малую сжимаемость жидкостей и твердых тел;
  • процессы испарения и плавления вещества;
  • испарение жидкостей при любой температуре и ее охлаждение при испарении.

1.5. Применять экспериментальные результаты для предсказания значения величин, характеризующих ход физических явлений:

  • положение тела при его движении под действием силы;
  • удлинение пружины под действием подвешенного груза;
  • силу тока при заданном напряжении;
  • значение температуры остывающей воды в заданный момент времени.

2. Владеть основными понятиями и законами физики.

2.1. Давать определение физических величин и формулировать физические законы.

2.2. Описывать:

  • физические явления и процессы;
  • изменения и преобразования энергии при анализе: свободного падения тел, движения тел при наличии трения, колебаний нитяного и пружинного маятников, нагревания проводников электрическим током, плавления и испарения вещества.

2.3. Вычислять:

  • равнодействующую силу, используя второй закон Ньютона;
  • импульс тела, если известны скорость тела и его масса;
  • расстояние, на которое распространяется звук за определенное время при заданной скорости;
  • кинетическую энергию тела при заданных массе и скорости;
  • потенциальную энергию взаимодействия тела с Землей и силу тяжести при заданной массе тела;
  • энергию, выделяемую в проводнике при прохождении электрического тока (при заданных силе тока и напряжении);
  • энергию, поглощаемую (выделяемую) при нагревании (охлаждении) тел;

2.4. Строить изображение точки в плоском зеркале и собирающей линзе.

3. Воспринимать, перерабатывать и предъявлять учебную информацию в различных формах (словесной, образной, символической).

3.1. Называть:

  • источники электростатического и магнитного полей, способы их обнаружения;
  • преобразования энергии в двигателях внутреннего сгорания, электрогенераторах, электронагревательных приборах.

3.2. Приводить примеры:

  • относительности скорости и траектории движения одного и того же тела в разных системах отсчета;
  • изменение скорости тел под действием силы;
  • деформация тел при взаимодействии;
  • проявление закона сохранения импульса в природе и технике;
  • колебательных и волновых движений в природе и технике;
  • экологических последствий работы двигателей внутреннего сгорания, тепловых, атомных и гидроэлектростанций;
  • опытов, подтверждающих основные положения молекулярно-кинетической теории.

3.4. Выделять главную мысль в прочитанном тексте.

3.5. Находить в прочитанном тексте ответы на поставленные вопросы.

3.6. Конспектировать прочитанный текст.

3.7. Определять:

  • промежуточные значения величин по таблицам результатов измерений и построенным графикам;
  • характер тепловых процессов: нагревание, охлаждение, плавление, кипение (по графикам изменения температуры тела со временем);
  • сопротивление металлического проводника (по графику колебаний);
  • по графику зависимости координаты от времени: в координату тела в заданный момент времени; промежутки времени, в течение которых тело двигалось с постоянной, увеличивающейся, уменьшающейся скоростью; промежутки времени действия силы.

3.8. Сравнивать сопротивления металлических проводников (больше - меньше) по графикам зависимости силы тока от напряжения.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: