Про заболевания ЖКТ

Клеточная мембрана . Клетка (рис. 1.1) как живая система нуждается в поддержании определенных внутренних условий: концентрации различных веществ, температуры внутри клетки и др. Одни из этих параметров поддерживаются на неизменном уровне, так как их изменение приведет к гибели клетки, другие играют меньшее значение для сохранения ее жизнедеятельности.

Рис. 1.1.

Клеточная мембрана должна обеспечивать отграничение содержимого клетки от окружающей среды для поддержания необходимой концентрации веществ внутри клетки, в то же время она должна быть проницаемой для постоянного обмена веществ между клеткой и средой (рис. 1.2). Мембраны также ограничивают внутренние структуры клетки - органоиды (органеллы) - от цитоплазмы. Однако эго не просто разделительные барьеры. Клеточные мембраны сами по себе являются важнейшим органом клетки, обеспечивающим не только ее структуру, но и многие функции. Помимо разделения клеток между собой и отграничения от внешней среды мембраны объединяют клетки в ткани, регулируют обмен между клеткой и внешней средой, сами являются местом протекания многих биохимических реакций, служат передатчиками информации между клетками.

По современным данным, плазматические мембраны - это липопротеиновые структуры (липопротеины - соединения белковых и жировых молекул). Липиды (жиры) спонтанно образуют двойной слой, а мембранные белки «плавают» в нем, словно острова в океане. В мембранах присутствуют несколько тысяч различных белков: структурные, переносчики, ферменты и др. Кроме того, между белковыми молекулами имеются поры, сквозь которые могут проходить некоторые вещества. К поверхности мембраны подсоединены специальные гликозильные группы, которые участвуют в процессе распознавания клеток при образовании тканей.


Рис. 1.2.

Разные типы мембран отличаются по своей толщине (обычно она составляет от 5 до 10 нм). По консистенции мембраны напоминают оливковое масло. Важнейшее свойство клеточной мембраны - полупроницаемость », т.е. способность пропускать только определенные вещества. Прохождение различных веществ через плазматическую мембрану необходимо для доставки питательных веществ и кислорода в клетку, вывода токсичных отходов, создания разницы концентрации отдельных микроэлементов для поддержания нервной и мышечной активности. Механизмы транспорта веществ через мембрану:

  • диффузия - газы, жирорастворимые молекулы проникают прямо через плазматическую мембрану, в том числе облегченная диффузия, когда растворимое в воде вещество проходит через мембрану по особому каналу;
  • осмос - диффузия воды через полунепроницаемые мембраны в сторону более низкой концентрации ионов;
  • активный транспорт - перенос молекул из области с меньшей концентрацией в область с большей с помощью специальных транспортных белков;
  • эндоцитоз - перенос молекул с помощью пузырьков (вакуолей), образуемых втягиванием мембраны; различают фагоцитоз (поглощение твердых частиц) и ниноцитоз (поглощение жидкостей) (рис. 1.3);
  • экзоцитоз - процесс, обратный эндоцитозу; посредством него из клеток могут выводиться твердые частицы и жидкий секрет (рис. 1.4).

Диффузия и осмос не требуют дополнительной энергии; активный транспорт, эндоцитоз и экзоцитоз нуждаются в обеспечении энергией, которую клетка получает при расщеплении усвоенных ею питательных веществ.


Рис. 1.3.


Рис. 1.4.

Регуляция прохождения различных веществ через плазматическую мембрану является одной из ее важнейших функций. В зависимости от внешних условий структура мембраны может изменяться: она может становиться более жидкой, активной и проницаемой. Регулятором проницаемости мембран является жироподобное вещество холестерол.

Внешняя структура клетки поддерживается более плотной структурой - клеточной оболочкой. Клеточная оболочка может иметь самое различное строение (быть эластичной, иметь жесткий каркас, щетинки, усики и др.) и выполнять достаточно сложные функции.

Ядро имеется во всех клетках человеческого организма, за исключением эритроцитов. Как правило, клетка содержит только одно ядро, однако есть и исключения - например, клетки поперечнополосатых мышц содержат множество ядер. Ядро имеет шаровидную форму, его размеры колеблются от 10 до 20 мкм (рис. 1.5).

Ядро отграничено от цитоплазмы ядерной оболочкой , состоящей из двух мембран - наружной и внутренней, аналогичных клеточной мембране, и узкой щели между ними, содержащей полужидкую среду; через поры ядерной оболочки осуществляется интенсивный обмен веществ между ядром и цитоплазмой. На внешней мембране оболочки расположено множество рибосом - органоидов, синтезирующих белок.

Под ядерной оболочкой находится кариоплазма (ядерный сок), в которую поступают вещества из цитоплазмы. Кариоплазма содержит хромо го сомы (продолговатые структуры, содержащие ДНК, в которых «записана» информация о строении белков, специфичных для данной клетки, - наследственная, или генетическая, информация) и ядрышки (округлые структуры внутри ядра, в которых происходит формирование рибосом).

Рис. 1.5.

Совокупность хромосом, содержащихся в ядре, называют хромосомным набором. Число хромосом в соматических клетках четное - диплоидное (у человека это 44 аутосомы и 2 половые хромосомы, определяющие половую принадлежность), половые клетки, участвующие в оплодотворении, несут половинный набор (у человека 22 аутосомы и 1 половая хромосома) (рис. 1.6).

Рис. 1.6.

Важнейшей функцией ядра является передача генетической информации дочерним клеткам: при делении клетки ядро делится надвое, а находящаяся в нем ДЫК копируется (репликация ДНК) - это позволяет каждой дочерней клетке иметь полную информацию, полученную от исходной (материнской) клетки (см. Размножение клеток).

Цитоплазма (цитозоль) - студенистое вещество, содержащее около 90% воды, в котором расположены все органоиды, содержатся истинные и коллоидные растворы питательных веществ и нерастворимые отходы метаболических процессов, протекают биохимические процессы: гликолиз, синтез жирных кислот, нуклеиновых кислот и других веществ. Органоиды в цитоплазме движутся, цитоплазма сама также совершает периодическое активное движение - циклоз.

Клеточные структуры (органоиды , или органеллы) представляют собой «внутренние органы» клетки (табл. 1.1). Они обеспечивают процессы жизнедеятельности клетки, выработку клеткой определенных веществ (секрета, гормонов, ферментов), от их жизнедеятельности зависит общая активность тканей организма, способность выполнять специфические для данной ткани функции. Структуры клетки, как и сама клетка, проходят свои жизненные циклы: рождаются (создаются путем воспроизводства), активно функционируют, стареют и разрушаются. Большинство клеток организма способно восстанавливаться на субклеточном уровне за счет воспроизводства и обновления входящих в ее структуру органоидов.

Таблица 1.1

Клеточные органоиды, их строение и функции

Органоиды

Строение

Цитоплазма

Заключена в наружную мембрану, включает различные органоиды. Представлена коллоидным раствором солей и органических веществ, пронизана цитоскелетом (системой белковых нитей)

Объединяет все клеточные структуры в единую систему, обеспечивает среду для протекания биохимических реакций, обмен веществами и энергией в клетке

Наружная

клеточная

мембрана

Два слоя мономолекулярного белка, между которыми расположен бимолекулярный слой липидов, в липидном слое имеются отверстия - поры

Ограничивает клетку, разделяет ее с окружающей средой, обладает избирательной проницаемостью, активно регулирует обмен веществ и энергии с внешней средой, отвечает за соединение клеток в ткани, обеспечивает пиноцитоз и фагоцитоз; регулирует водный баланс клетки и выводит из нее «шлаки» - продукты жизнедеятельности

Эндоплазматическая сеть (ЭС)

Система трубочек, канальцев, цистерн, пузырьков, образованных ультрамикроскопичсскими мембранами, объединенная в единое целое с наружной мембраной

Транспорт веществ внутри клетки и между соседними клетками; разделение клетки на секторы, в которых могут проходить различные процессы.

Окончание табл. 1.1

Органоиды

Строение

ядерной оболочки и наружной клеточной мембраной. Гранулярная ЭС несет рибосомы, гладкая не имеет рибосом

Гранулярная ЭС участвует в синтезе белка. В каналах ЭС происходит синтез белка, жиров, транспорт АТФ

Рибосомы

Маленькие сферические органоиды, состоящие из РНК и белка

Осуществляют синтез белка

Микроскопические одномембранные органеллы, состоящие из стопочки

плоских цистерн, по краям которых ответвляются трубочки, отделяющие мелкие пузырьки

В пузырьках накапливаются продукты обменных процессов клетки. Упакованные в пузырьки, они поступают в цитоплазму и либо используются, либо выводятся наружу как шлаки

Л изосомы

Одномембраиные органоиды, число которых зависит от жизнедеятельности клетки. В лизосомах содержатся ферменты, образованные в рибосомах

Переваривание питательных веществ. Защитная функция. Автолиз (саморастворение орга- нелл и самой клетки в условиях пищевого или кислородного голодания)

Триллионы клеток в человеческом теле встречаются во всех формах и размерах. Эти крошечные структуры являются основной . Клетки формируют ткани органов, которые образуют системы органов, работающих вместе для поддерживания жизнедеятельности организма.

В теле есть сотни различных типов клеток, и каждый тип подходит для той роли, которую он выполняет. Клетки пищеварительной системы, к примеру, отличаются по структуре и функции от клеток костной системы. Независимо от различий, клетки тела зависят друг от друга, прямо или косвенно, чтобы организм функционировал как единое целое. Ниже приведены примеры различных типов клеток в организме человека.

Стволовые клетки

Стволовые клетки являются уникальными клетками организма, поскольку они неспециализированы и обладают способностью развиваться в специализированные клетки для определенных органов или тканей. Стволовые клетки способны к многоразовому делению, чтобы пополнить и восстановить ткань. В области исследований стволовых клеток ученые пытаются использовать преимущества возобновляемых свойств, применяя их в создании клеток для восстановления тканей, трансплантации органов и лечения болезней.

Костные клетки

Кости являются типом минерализованной соединительной ткани и основным компонентом скелетной системы. Костные клетки образуют кость, которая состоит из матрицы минералов коллагена и фосфата кальция. В организме есть три основных типа костных клеток. Остеокласты представляют собой крупные клетки, которые разлагают кости для резорбции и ассимиляции. Остеобласты регулируют минерализацию кости и производят остеоид (органическое вещество костной матрицы). Остеобласты созревают для образования остеоцитов. Остеоциты помогают в формировании кости и поддерживают баланс кальция.

Клетки крови

От транспортировки кислорода по всему телу до борьбы с инфекцией, клетки жизненно важны для жизни. Есть три основных типа клеток в крови - это эритроциты, лейкоциты и тромбоциты. Эритроциты определяют тип крови и также ответственны за транспортировку кислорода в клетки. Лейкоциты являются клетками иммунной системы, которые разрушают и обеспечивают иммунитет. Тромбоциты помогают сгущать кровь и предотвращают чрезмерную потерю крови из поврежденных кровеносных сосудов. Клетки крови продуцируются костным мозгом.

Мышечные клетки

Мышечные клетки образуют мышечную ткань, что важно для телесного движения. Скелетная мышечная ткань прикрепляется к костям, способствуя движению. Скелетные мышечные клетки покрыты соединительной тканью, которая защищает и поддерживает пучки мышечных волокон. Сердечные мышечные клетки образуют непроизвольную сердечную мышцу. Эти клетки помогают в сокращении сердца и соединяются друг с другом посредством интеркалированных дисков, позволяющих синхронизировать сердечный ритм. Гладкая мышечная ткань не стратифицирована как сердечная или скелетная мышцы. Гладкая мышца - непроизвольная мышца, которая образует полости тела и стенки многих органов (почек, кишечника, кровеносных сосудов, дыхательных путей легких и т.д.).

Жировые клетки

Жировые клетки, также называемые адипоцитами, являются основным клеточным компонентом жировой ткани. Адипоциты содержат триглицериды, которые могут быть использованы для получения энергии. Во время хранения жира, жировые клетки набухают и приобретают круглую форму. Когда жир используется, эти клетки уменьшаются в размерах. Жировые клетки также обладают эндокринной функцией, поскольку они продуцируют гормоны, влияющие на метаболизм половых гормонов, регуляцию кровяного давления, чувствительность к инсулину, хранение или использование жиров, свертывание крови и сигнализацию клеток.

Клетки кожи

Кожа состоит из слоя эпителиальной ткани (эпидермиса), который поддерживается слоем соединительной ткани (дермы) и подкожным слоем. Самый внешний слой кожи состоит из плоских эпителиальных клеток, которые плотно укомплектованы вместе. Кожа защищает внутренние структуры организма от повреждений, предотвращает обезвоживание, действует как барьер против микробов, сохраняет жир, вырабатывает витамины и гормоны.

Нервные клетки (нейроны)

Клетки нервной ткани или нейроны являются основной единицей нервной системы. Нервы осуществляют передачу сигналов между мозгом, спинным мозгом и органами тела посредством нервных импульсов. Нейрон состоит из двух основных частей: тело клетки и нервные процессы. Тело центральной клетки включает нейронное , ассоциированную и . Нервные процессы - это «пальцеобразные» проекции (аксоны и дендриты), простирающиеся от клеточного тела и способны проводить или передавать сигналы.

Эндотелиальные клетки

Эндотелиальные клетки образуют внутреннюю оболочку сердечно-сосудистой системы и структур лимфатических систем. Эти клетки составляют внутренний слой кровеносных сосудов, лимфатических сосудов и органов, включая мозг, легкие, кожу и сердце. Эндотелиальные клетки ответственны за ангиогенез или создание новых кровеносных сосудов. Они также регулируют движение макромолекул, газов и жидкости между кровью и окружающими тканями, а также помогают регулировать кровяное давление.

Половые клетки

Раковые клетки

Рак является результатом развития аномальных свойств в нормальных клетках, что позволяет им неконтролируемо делиться и распространяться в других местах организма. Развитие может быть вызвано мутациями, которые происходят от таких факторов, как химикаты, радиация, ультрафиолетовое излучение, ошибки репликации или вирусная инфекция. Раковые клетки теряют чувствительность к сигналам против роста, быстро размножаются и утрачивают способность проходить .


Клетка - это структурно-функциональная единица живого организма, способная к делению и обмену с окружающей средой. Она осуществляет передачу генетической информации путем самовоспроизведения.

Клетки очень разнообразны по строению, функции, форме, размерам (рис. 1). Последние колеблются от 5 до 200 мкм. Самыми крупными в организме человека являются яйцеклетка и нервная клетка, а самыми маленькими - лимфоциты крови. По форме клетки бывают шаровидные, веретеновидные, плоские, кубические, призматические и др. Некоторые клетки вместе с отростками достигают длины до 1,5 м и более (например, нейроны).

Рис. 1. Формы клеток:

1 - нервная; 2 - эпителиальная; 3 - соединителытотканная; 4 - гладкая мышечная; 5- эритроцит; 6- сперматозоид; 7-яйцеклетка


Каждая клетка имеет сложное строение и представляет собой систему биополимеров, содержит ядро, цитоплазму и находящиеся в ней органеллы (рис. 2). От внешней среды клетка отграничивается клеточной оболочкой - плазма-леммой (толщина 9-10 мм), которая осуществляет транспорт необходимых веществ в клетку, и наоборот, взаимодействует с соседними клетками и межклеточным веществом. Внутри клетки находится ядро, в котором происходит синтез белка, оно хранит генетическую информацию в виде ДНК (дезоксирибонуклеиновая кислота). Ядро может иметь округлую или овоидную форму, но в плоских клетках оно несколько сплющенное, а в лейкоцитах палочковидное или бобовидное. В эритроцитах и тромбоцитах оно отсутствует. Сверху ядро покрыто ядерной оболочкой, которая представлена внешней и внутренней мембраной. В ядре находится нуклеошазма, которая представляет собой гелеобразное вещество и содержит хроматин и ядрышко.


Рис. 2. Схема ультрамикроскопического строения клетки

(по М. Р. Сапину, Г. Л. Билич, 1989):

1 - цитолемма (плазматическая мембрана); 2 - пиноцитозные пузырьки; 3 - центросома (клеточный центр, цитоцентр); 4 - гиалоплазма; 5 - эн-доплазматическая сеть (о - мембраны эндоплазматической сети, б - ри-босомы); 6- ядро; 7- связь перинуклеарного пространства с полостями эндоплазматической сети; 8 - ядерные поры; 9 - ядрышко; 10 - внутриклеточный сетчатый аппарат (комплекс Гольджи); 77-^ секреторные вакуоли; 12- митохондрии; 7J - лизосомы; 74-три последовательные стадии фагоцитоза; 75 - связь клеточной оболочки (цитолеммы) с мембранами эндоплазматической сети


Ядро окружает цитоплазма, в состав которой входят ги-алоплазма, органеллы и включения.

Гиалоплазма - это основное вещество цитоплазмы, она участвует в обменных процессах клетки, содержит белки, полисахариды, нуклеиновую кислоту и др.

Постоянные части клетки, которые имеют определенную структуру и выполняют биохимические функции, называются органеллами. К ним относятся клеточный центр, митохондрии, комплекс Гольджи, эндоплазматическая (ци-топлазматическая) сеть.

Клеточный центр обычно находится около ядра или комплекса Гольджи, состоит из двух плотных образований - центриолей, которые входят в состав веретена движущейся клетки и образуют реснички и жгутики.

Митохондрии имеют форму зерен, нитей, палочек, формируются из двух мембран - внутренней и внешней. Длина митохондрии колеблется от 1 до 15 мкм, диаметр - от 0,2 до 1,0 мкм. Внутренняя мембрана образует складки (кри-сты), в которых располагаются ферменты. В митохондриях происходят расщепление глюкозы, аминокислот, окислении жирных кислот, образование АТФ (аденозинтрифосфорнай кислота) - основного энергетического материала.

Комплекс Гольджи (внутриклеточный сетчатый аппарат) имеет вид пузырьков, пластинок, трубочек, расположенных вокруг ядра. Его функция состоит в транспорте веществ, химической их обработке и выведении за пределы клетки продуктов ее жизнедеятельности.

Эндоплазматическая (цитоплазматическая) сеть формируется из агранулярной (гладкой) и гранулярной (зернистой) сети. Агранулярная Эндоплазматическая сеть образуется преимущественно мелкими цистернами и трубочками диаметром 50-100 нм, которые участвуют в обмене липи-дов и полисахаридов. Гранулярная Эндоплазматическая сеть состоит из пластинок, трубочек, цистерн, к стенкам которых прилегают мелкие образования - рибосомы, синтезирующие белки.

Цитоплазма также имеет постоянные скопления отдельных веществ, которые называются включениями цитоплазмы и имеют белковую, жировую и пигментную природу.

Клетка как часть многоклеточного организма выполняет основные функции: усвоение поступающих веществ и расщепление их с образованием энергии, необходимой для поддержания жизнедеятельности организма. Клетки обладают также раздражимостью (двигательные реакции) и способны размножаться делением. Деление клеток бывает непрямое (митоз) и редукционное (мейоз).

Митоз - самая распространенная форма клеточного деления. Он состоит из нескольких этапов - профазы, метафазы, анафазы и телофазы. Простое (или прямое) деление клеток - амитоз - встречается редко, в тех случаях, когда клетка делится на равные или неравные части. Мейоз - форма ядерного деления, при котором количество хромосом в оплодотворенной клетке уменьшается вдвое и наблюдается перестройка генного аппарата клетки. Период от одного деления клетки к другому называется ее жизненным циклом.



| |

Предметы живой природы имеют клеточное строение схожее для всех видов. Однако каждое царство имеет свои особенности. Узнать подробнее какое строение животной клетки, поможет данная статья, в которой мы расскажем не только об особенностях, но и познакомим с функциями органоидов.

Сложноорганизованный животный организм состоит из большого количества тканей. Форма и назначение клетки зависит от вида ткани, в состав которой она входит. Несмотря на их разнообразие, можно обозначить общие свойства в клеточном строении:

  • мембрана состоит из двух слоёв, которые отделяют содержимое от внешней среды. По своей структуре она эластична, поэтому клетки могут иметь разнообразную форму;
  • цитоплазма находится внутри клеточной мембраны. Это вязкая жидкость, которая постоянно двигается;

За счёт движения цитоплазмы внутри клетки протекают различные химические процессы и обмен веществ.

  • ядро - имеет большие размеры, по сравнению с растениями. Располагается в центре, внутри него находится ядерный сок, ядрышко и хромосомы;
  • митохондрии состоят из множества складок – крист;
  • эндоплазматическая сеть имеет множество каналов, по ним питательные вещества поступают в аппарат Гольджи;
  • комплекс трубочек, именуемый аппаратом Гольджи , накапливает питательные вещества;
  • лизосомы регулируют количество углеродов и других питательных веществ;
  • рибосомы расположены вокруг эндоплазматической сети. Их наличие делает сеть шероховатой, гладкая поверхность ЭПС свидетельствует об отсутствии рибосом;
  • центриоли - особые микротрубочки, которые отсутствуют у растений.

Рис. 1. Строение животной клетки.

Учёные открыли наличие центриолей недавно. Так как увидеть и изучить их можно только с помощью электронного микроскопа.

Функции органоидов клетки

Каждый органоид выполняет определённые функции, совместная их работа составляет единый сплочённый организм. Так, например:

  • клеточная мембрана обеспечивает транспортирование веществ внутрь клетки и из неё;
  • внутри ядра находится генетический код, который передаётся из поколения в поколение. Именно ядро регулирует работу других органелл клетки;
  • энергетическими станциями организма являются митохондрии . Именно здесь образуется вещество АТФ, при расщеплении которого выделяется большое количество энергии.

Рис. 2. Строение митохондрий

  • на стенках аппарата Гольджи синтезируются жиры и углеводы, которые необходимы для построения мембран других органоидов;
  • лизосомы расщепляют ненужные жиры и углеводы, а также вредные вещества;
  • рибосомы синтезируют белок;
  • клеточный центр (центриоли) играют важную роль в образовании веретена деления во время митоза клетки.

Рис. 3. Центриоли.

В отличие от растительной клетки у животной отсутствуют вакуоли. Однако могут образовываться временные маленькие вакуоли, которые содержат вещества для удаления из организма. 4.2 . Всего получено оценок: 706.

Клетки – это микроскопические живые элементы, из которых, как здание из кирпичиков, состоит человеческое тело . Их очень много – для образования организма новорожденного клеток требуется около двух триллионов!

Клетки бывают различных типов или видов, например, нервные клетки или клетки печени, но каждая из них содержит информацию, необходимую для возникновения и нормальной работы организма человека.

Строение клетки человека

Строение всех клеток тела человека практически одинаково. Каждая живая клетка состоит из защитной оболочки (она называется мембраной), которая окружает желеобразную массу – цитоплазму. В цитоплазме плавают мелкие органы или компоненты клетки – органеллы, и содержится «командный пункт» или «центр управления» клетки – её ядро. Именно в ядре заключена информация, необходимая для нормальной жизнедеятельности клетки и «инструкции», на выполнении которых основана её работа.

Деление клеток

Ежесекундно организм человека обновляется, в нём отмирают и рождаются, замещая друг друга, миллионы клеток. Например, замещение старых клеток кишечника новыми происходит со скоростью миллион в минуту. Каждая новая клетка возникает в результате деления уже существующей, и процесс этот можно разделить на три этапа:
1. Перед началом деления клетка копирует содержащуюся в ядре информацию;
2. Потом на две части делится ядро клетки, а затем цитоплазма;
3. В результате деления получаются две новые клетки, являющиеся точными копиями клетки-матери.

Виды и внешний вид клеток человеческого организма

Несмотря на одинаковое строение, клетки человека отличаются по форме и размеру, в зависимости от функций, которые они выполняют. С помощью электронного микроскопа учёные выяснили, что клетки могут иметь форму параллелепипеда (например, клетки эпидермиса), шара (кровяные), звёздочки и даже проводов (нервные), а всего их около 200 видов.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: