Про заболевания ЖКТ

Однородное дифференциальное уравнение первого порядка - это уравнение вида
, где f - функция.

Как определить однородное дифференциальное уравнение

Для того, чтобы определить, является ли дифференциальное уравнение первого порядка однородным, нужно ввести постоянную t и заменить y на ty и x на tx : y → ty , x → tx . Если t сократится, то это однородное дифференциальное уравнение . Производная y′ при таком преобразовании не меняется.
.

Пример

Определить, является ли данное уравнение однородным

Решение

Делаем замену y → ty , x → tx .


Делим на t 2 .

.
Уравнение не содержит t . Следовательно, это однородное уравнение.

Метод решения однородного дифференциального уравнения

Однородное дифференциальное уравнение первого порядка приводится к уравнению с разделяющимися переменными с помощью подстановки y = ux . Покажем это. Рассмотрим уравнение:
(i)
Делаем подстановку:
y = ux ,
где u - функция от x . Дифференцируем по x :
y′ =
Подставляем в исходное уравнение (i) .
,
,
(ii) .
Разделяем переменные. Умножаем на dx и делим на x ( f(u) - u ) .

При f(u) - u ≠ 0 и x ≠ 0 получаем:

Интегрируем:

Таким образом, мы получили общий интеграл уравнения (i) в квадратурах:

Заменим постоянную интегрирования C на ln C , тогда

Опустим знак модуля, поскольку нужный знак определяется выбором знака постоянной C . Тогда общий интеграл примет вид:

Далее следует рассмотреть случай f(u) - u = 0 .
Если это уравнение имеет корни, то они являются решением уравнения (ii) . Поскольку уравнение (ii) не совпадает с исходным уравнением, то следует убедиться, что дополнительные решения удовлетворяют исходному уравнению (i) .

Всякий раз, когда мы, в процессе преобразований, делим какое либо уравнение на некоторую функцию, которую обозначим как g(x, y) , то дальнейшие преобразования справедливы при g(x, y) ≠ 0 . Поэтому следует отдельно рассматривать случай g(x, y) = 0 .

Пример решения однородного дифференциального уравнения первого порядка

Решить уравнение

Решение

Проверим, является ли данное уравнение однородным. Делаем замену y → ty , x → tx . При этом y′ → y′ .
,
,
.
Сокращаем на t .

Постоянная t сократилась. Поэтому уравнение является однородным.

Делаем подстановку y = ux , где u - функция от x .
y′ = (ux) ′ = u′ x + u (x) ′ = u′ x + u
Подставляем в исходное уравнение.
,
,
,
.
При x ≥ 0 , |x| = x . При x ≤ 0 , |x| = - x . Мы пишем |x| = ± x подразумевая, что верхний знак относится к значениям x ≥ 0 , а нижний - к значениям x ≤ 0 .
,
Умножаем на ± dx и делим на .

При u 2 - 1 ≠ 0 имеем:

Интегрируем:

Интегралы табличные ,
.

Применим формулу:
(a + b)(a - b) = a 2 - b 2 .
Положим a = u , .
.
Возьмем обе части по модулю и логарифмируем,
.
Отсюда
.

Таким образом имеем:
,
.
Опускаем знак модуля, поскольку нужный знак обеспечивается выбором знака постоянной C .

Умножаем на x и подставляем ux = y .
,
.
Возводим в квадрат.
,
,
.

Теперь рассмотрим случай, u 2 - 1 = 0 .
Корни этого уравнения
.
Легко убедиться, что функции y = ± x удовлетворяют исходному уравнению.

Ответ

,
,
.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

В этой статье мы рассмотрим способ решения однородных тригонометрических уравнений.

Однородные тригонометрические уравнения имеют ту же структуру, что и однородные уравнения любого другого вида. Напомню способ решения однородных уравнений второй степени:

Рассмотрим однородные уравнения вида

Отличительные признаки однородных уравнений:

а) все одночлены имеют одинаковую степень,

б) свободный член равен нулю,

в) в уравнении присутствуют степени с двумя различными основаниями.

Однородные уравнения решаются по сходному алгоритму.

Чтобы решить уравнение такого типа, разделим обе части уравнения на (можно разделить на или на )

Внимание! При делении правой и левой части уравнения на выражение, содержащее неизвестное, можно потерять корни. Поэтому необходимо проверить, не являются ли корни того выражения, на которое мы делим обе части уравнения, корнями исходного уравнения.

Если является, то мы выписываем этот корень, чтобы потом про него не забыть, а затем делим на это выражение.

Вообще, первым делом, при решении любого уравнения, в правой части которого стоит ноль, нужно попытаться разложить левую часть уравнения на множители любым доступным способом. А затем каждый множитель приравнять к нулю. В этом случае мы точно не потеряем корни.

Итак, осторожно разделим левую часть уравнения на выражение почленно. Получим:

Сократим числитель и знаменатель второй и третьей дроби:

Введем замену:

Получим квадратное уравнение:

Решим квадратное уравнение, найдем значения , а затем вернемся к исходному неизвестному.

При решении однородных тригонометрических уравнений, нужно помнить несколько важных вещей:

1. Свободный член можно преобразовать к квадрату синуса и косинуса с помощью основного тригонометрического тождества:

2. Синус и косинус двойного аргумента являются одночленами второй степени - синус двойного аргумента легко преобразовать к произведению синуса и косинуса, а косинус двойного аргумента - к квадрату синуса или косинуса:

Рассмотрим несколько примеров решения однородных тригонометрических уравнений.

1 . Решим уравнение:

Это классический пример однородного тригонометрического уравнения первой степени: степень каждого одночлена равна единице, свободный член равен нулю.

Прежде чем делить обе части уравнения на , необходимо проверить, что корни уравнения не являются корнями исходного уравнения. Проверяем: если , то title="sin{x}0">, следовательно их сумма не равна нулю.

Разделим обе части уравнения на .

Получим:

, где

, где

Ответ: , где

2 . Решим уравнение:

Это пример однородного тригонометрического уравнения второй степени. Мы помним, что если мы можем разложить левую часть уравнения на множители, то желательно это сделать. В этом уравнении мы можем вынести за скобки . Сделаем это:

Решение первого уравнения: , где

Второе уравнение - однородное тригонометрическое уравнение первой степени. Чтобы его решить, разделим обе части уравнения на . Получим:

Ответ: , где ,

3 . Решим уравнение:

Чтобы это уравнение "стало" однородным, преобразуем в произведение, и представим число 3 в виде суммы квадратов синуса и косинуса:

Перенесем все слагаемые влево, раскроем скобки и приведем подобные члены. Получим:

Разложим левую часть на множители и приравняем каждый множитель к нулю:

Ответ: , где ,

4 . Решим уравнение:

Мы видим, что можем вынести за скобки . Сделаем это:

Приравняем каждый множитель к нулю:

Решение первого уравнения:

Второе уравнение совокупности представляет собой классическое однородное уравнение второй степени. Корни уравнения не являются корнями исходного уравнения, поэтому разделим обе части уравнения на :

Решение первого уравнения:

Решение второго уравнения.

Например, функция
- однородная функция первого измерения, так как

- однородная функция третьего измерения, так как

- однородная функция нулевого измерения, так как

, т.е.
.

Определение 2. Дифференциальное уравнение первого порядкаy " = f (x , y ) называется однородным, если функцияf (x , y ) есть однородная функция нулевого измерения относительноx иy , или, как говорят,f (x , y ) – однородная функция степени нуль.

Его можно представить в виде

что позволяет определить однородное уравнение как такое дифференциальное, которое можно преобразовать к виду (3.3).

Замена
приводит однородное уравнение к уравнению с разделяющимися переменными. Действительно, после подстановкиу = xz получим
,
Разделяя переменные и интегрируя, найдем:


,

Пример 1.Решить уравнение.

Δ Полагаем у = zx ,
Подставляем эти выраженияy иdy в данное уравнение:
или
Разделяем переменные:
и интегрируем:
,

Заменяя z на, получим
.

Пример 2. Найти общее решение уравнения.

Δ В данном уравнении P (x ,y ) =x 2 -2y 2 ,Q (x ,y ) =2xy – однородные функции второго измерения, следовательно, данное уравнение является однородным. Его можно представить в виде
и решать так же, как и представленное выше. Но используем другую форму записи. Положимy = zx , откудаdy = zdx + xdz . Подставляя эти выражения в исходное уравнение, будем иметь

dx +2 zxdz = 0 .

Разделяем переменные, считая

.

Интегрируем почленно это уравнение

, откуда

то есть
. Возвращаясь к прежней функции
находим общее решение

Пример 3 . Найти общее решение уравнения
.

Δ Цепочка преобразований: ,y = zx ,
,
,
,
,
,
,
,
, ,
.

Лекция 8.

4. Линейные дифференциальные уравнения первого порядка Линейное дифференциальное уравнение первого порядка имеет вид

Здесь – свободный член, называемый также правой частью уравнения. В этом виде будем рассматривать линейное уравнение в дальнейшем.

Если
0, то уравнение (4.1а) называется линейным неоднородным. Если же
0, то уравнение принимает вид

и называется линейным однородным.

Название уравнения (4.1а) объясняется тем, что неизвестная функция y и её производнаявходят в него линейно, т.е. в первой степени.

В линейном однородном уравнении переменные разделяются. Переписав его в виде
откуда
и интегрируя, получаем:
,т.е.


При делении на теряем решение
. Однако оно может быть включено в найденное семейство решений (4.3), если считать, чтоС может принимать и значение 0.

Существует несколько методов решения уравнения (4.1а). Согласно методу Бернулли , решение ищется в виде произведения двух функций отх :

Одна из этих функций может быть выбрана произвольно, так как лишь произведение uv должно удовлетворять исходному уравнению, другая определяется на основании уравнения (4.1а).

Дифференцируя обе части равенства (4.4), находим
.

Подставляя полученное выражение производной , а также значениеу в уравнение (4.1а), получаем
, или

т.е. в качестве функции v возьмём решение однородного линейного уравнения (4.6):

(Здесь C писать обязательно, иначе получится не общее, а частное решение).

Таким образом, видим, что в результате используемой подстановки (4.4) уравнение (4.1а) сводится к двум уравнениям с разделяющимися переменными (4.6) и (4.7).

Подставляя
иv (x) в формулу (4.4), окончательно получаем

,

.

Пример 1. Найти общее решение уравнения

 Положим
, тогда
. Подставляя выраженияив исходное уравнение, получим
или
(*)

Приравняем нулю коэффициент при :

Разделяя переменные в полученном уравнении, имеем


(произвольную постояннуюC не пишем), отсюдаv = x . Найденное значениеv подставляем в уравнение (*):

,
,
.

Следовательно,
общее решение исходного уравнения.

Отметим, что уравнение (*) можно было записать в эквивалентном виде:

.

Произвольно выбирая функцию u , а неv , мы могли полагать
. Этот путь решения отличается от рассмотренного только заменойv наu (и, следовательно,u наv ), так что окончательное значениеу оказывается тем же самым.

На основании изложенного выше получаем алгоритм решения линейного дифференциального уравнения первого порядка.


Отметим далее, что иногда уравнение первого порядка становится линейным, если у считать независимой переменной, аx – зависимой, т.е. поменять ролиx иy . Это можно сделать при условии, чтоx иdx входят в уравнение линейно.

Пример 2 . Решить уравнение
.

    По виду это уравнение не является линейным относительно функции у .

Однако если рассматривать x как функцию оту , то, учитывая, что
,его можно привести к виду

(4.1 б )

Заменив на,получим
или
. Разделив обе части последнего уравнения на произведениеydy , приведем его к виду

, или
. (**)

Здесь P(y)=,
. Это линейное уравнение относительноx . Полагаем
,
. Подставляя эти выражения в (**), получаем

или
.

Выберем vтак, чтобы
,
, откуда
;
. Далее имеем
,
,
.

Т.к.
, то приходим к общему решению данного уравнения в виде

.

Отметим, что в уравнение (4.1а) P (x ) иQ (x ) могут входить не только в виде функций от x , но и констант:P = a ,Q = b . Линейное уравнение

можно решать и с помощью подстановки y=uv и разделением переменных:

;
.

Отсюда
;
;
; где
. Освобождаясь от логарифма, получаем общее решение уравнения

(здесь
).

При b = 0 приходим к решению уравнения

(см. уравнение показательного роста (2.4) при
).

Сначала интегрируем соответствующее однородное уравнение (4.2). Как указано выше, его решение имеет вид (4.3). Будем считать сомножитель С в (4.3) функцией отх , т.е. по существу делаем замену переменной

откуда, интегрируя, находим

Отметим, что согласно (4.14) (см. также (4.9)), общее решение неоднородного линейного уравнения равно сумме общего решения соответствующего однородного уравнения (4.3) и частного решения неоднородного уравнения, определяемого вторым слагаемым, входящим в (4.14) (и в (4.9)).

При решении конкретных уравнений следует повторять приведённые выше выкладки, а не использовать громоздкую формулу (4.14).

Применим метод Лагранжа к уравнению, рассмотренному в примере 1 :

.

Интегрируем соответствующее однородное уравнение
.

Разделяя переменные, получаем
и далее
. Решение выражения формулойy = Cx . Решение исходного уравнения ищем в видеy = C (x )x . Подставив это выражение в заданное уравнение, получим
;
;
,
. Общее решение исходного уравнения имеет вид

.

В заключение отметим, что к линейному уравнению приводится уравнение Бернулли

, (
)

которое можно записать в виде

.

Заменой
оно приводится к линейному уравнению:

,
,
.

Уравнения Бернулли также решаются изложенными выше методами.

Пример 3 . Найти общее решения уравнения
.

 Цепочка преобразований:
,
,,
,
,
,
,
,
,
,
,
,
,
,

В настоящее время по базовому уровню изучения математики на изучение математики в старших классах предусмотрено всего 4 часа (2 часа алгебры, 2 часа геометрии). В сельских малокомплектных школах стараются увеличить количество часов за счет школьного компонента. Но если класс гуманитарный, то школьный компонент добавляется на изучение предметов гуманитарного направления. В маленьком селе зачастую школьнику выбирать не приходится, он учится в том классе; какой имеется в школе. Становиться же юристом, историком или журналистом (бывают такие случаи) не собирается, а хочет стать инженером или экономистом, поэтому ЕГЭ по математике должен сдать на высокие балы. При таких обстоятельствах, учителю математики приходится находить свой выход из создавшейся ситуации, к тому же по учебнику Колмогорова изучение темы «однородные уравнения» не предусмотрено. В прошлые годы для введения данной темы и закрепления мне требовалось два сдвоенных урока. К сожалению, проверка образовательного надзора у нас запретила сдвоенные уроки в школе, поэтому количество упражнений пришлось сократить до 45 минут, и соответственно уровень сложности упражнений понизить до среднего. Предлагаю вашему вниманию план-конспект урока по данной теме в 10 классе с базовым уровнем изучения математики в сельской мало комплектной школе.

Тип урока : традиционный.

Цель : научиться решать типичные однородные уравнения.

Задачи :

Познавательные :

Развивающие :

Воспитательные :

  • Воспитание трудолюбия через терпеливое выполнение заданий, чувства товарищества через работу в парах и группах.

Ход урока

I. Организационный этап (3 мин.)

II. Проверка знаний, необходимых для усвоения нового материала (10 мин.)

Выявить основные затруднения с дальнейшим разбором выполненных заданий. Ребята выполняют по выбору 3 варианта. Задания, дифференцированные по степени сложности и по уровню подготовленности ребят, с последующим объяснением у доски.

1 уровень . Решите уравнения:

  1. 3(х+4)=12,
  2. 2(х-15)=2х-30
  3. 5(2-х)=-3х-2(х+5)
  4. x 2 -10х+21=0 Ответы: 7;3

2 уровень . Решите простейшие тригонометрические уравнения и биквадратное уравнение:

ответы:

б) x 4 -13x 3 +36=0 Ответы: -2; 2; -3; 3

3 уровень. Решение уравнений методом замены переменных:

б) x 6 -9x 3 +8=0 Ответы:

III. Сообщение темы, установка целей и задач.

Тема: Однородные уравнения

Цель : научиться решать типичные однородные уравнения

Задачи :

Познавательные :

  • познакомиться с однородными уравнениями, научиться решать наиболее часто встречаемые виды таких уравнений.

Развивающие :

  • Развитие аналитического мышления.
  • Развитие математических навыков: научиться выделять основные признаки, по которым однородные уравнения отличаются от других уравнений, уметь устанавливать сходство однородных уравнений в их различных проявлениях.

IV. Усвоение новых знаний (15 мин.)

1. Лекционный момент.

Определение 1 (Записываем в тетрадь). Уравнение вида P(x;y)=0 называется однородным, если P(x;y) однородный многочлен.

Многочлен от двух переменных х и у называют однородным, если степень каждого его члена равна одному и тому же числу к.

Определение 2 (Просто ознакомление). Уравнения вида

называют однородным уравнением степени n относительно u(x) и v(x). Поделив обе части уравнения на (v(x))n, можно с помощью замены получить уравнение

Что позволяет упростить исходное уравнение. Случай v(x)=0 необходимо рассмотреть отдельно, так как на 0 делить нельзя.

2. Примеры однородных уравнений:

Поясните: почему они однородные, приведите свои примеры таких уравнений.

3. Задание на определение однородных уравнений:

Среди заданных уравнений определить однородные уравнения и объяснить свой выбор:

После того как объяснили свой выбор на одном из примеров показать способ решения однородного уравнения:

4. Решить самостоятельно:

Ответ:

б) 2sin x – 3 cos x =0

Разделим обе части уравнения на cos x, получим 2 tg x -3=0, tg x=⅔ , x=arctg⅔ +

5. Показать решение примера из брошюры «П.В. Чулков. Уравнения и неравенства в школьном курсе математики. Москва Педагогический университет «Первое сентября» 2006 стр.22». Как один из возможных примеров ЕГЭ уровня С.

V . Решить для закрепления по учебнику Башмакова

стр 183 № 59 (1,5) или по учебнику под редакцией Колмогорова: стр81 №169 (а, в)

ответы:

VI . Проверочная, самостоятельная работа (7 мин.)

1 вариант 2 вариант
Решить уравнения:
а) sin 2 x-5sinxcosx+6cos 2 x=0 а) 3sin 2 x+2sin x cos x-2cos 2 x=0

б) cos 2 -3sin 2 =0

б)

Ответы к заданиям:

1 вариант а) Ответ: arctg2+πn,n € Z; б) Ответ: ±π/2+ 3πn,n € Z; в)

2 вариант а) Ответ: arctg(-1±31/2)+πn,n € Z; б) Ответ: -arctg3+πn, 0,25π+πk, ; в) (-5;-2); (5;2)

VII . Домашнее задание

№169 по Колмогорову, №59 по Башмакову.

Кроме этого, решить систему уравнений:

Ответ: arctg(-1±√3) +πn ,

Использованная литература:

  1. П.В. Чулков. Уравнения и неравенства в школьном курсе математики. – М.: Педагогический университет «Первое сентября», 2006. стр. 22
  2. А. Мерзляк, В. Полонский, Е. Рабинович, М. Якир. Тригонометрия. – М.: «АСТ-ПРЕСС», 1998, стр. 389
  3. Алгебра для 8 класса под редакцией Н.Я. Виленкина. – М.: «Просвещение», 1997.
  4. Алгебра для 9 класса под редакцией Н.Я. Виленкина. Москва «Просвещение», 2001.
  5. М.И. Башмаков. Алгебра и начала анализа. Для 10-11 классов – М.: «Просвещение» 1993
  6. Колмогоров, Абрамов, Дудницын. Алгебра и начала анализа. Для 10-11 классов. – М.: «Просвещение», 1990.
  7. А.Г. Мордкович. Алгебра и начала анализа. Часть 1 Учебник 10-11 классы. – М.: «Мнемозина», 2004.

Чтобы решить однородное дифференциальное уравнение 1-го порядка, используют подстановку u=y/x, то есть u — новая неизвестная функция, зависящая от икса. Отсюда y=ux. Производную y’ находим с помощью правила дифференцирования произведения:y’=(ux)’=u’x+x’u=u’x+u (так как x’=1). Для другой формы записи: dy=udx+xdu.После подстановки уравнение упрощаем и приходим к уравнению с разделяющимися переменными.

Примеры решения однородных дифференциальных уравнений 1-го порядка.

1) Решить уравнение

Проверяем, что это уравнение является однородным (см. Как определить однородное уравнение). Убедившись, делаем замену u=y/x, откуда y=ux, y’=(ux)’=u’x+x’u=u’x+u. Подставляем: u’x+u=u(1+ln(ux)-lnx). Так как логарифм произведения равен сумме логарифмов, ln(ux)=lnu+lnx. Отсюда

u’x+u=u(1+lnu+lnx-lnx). После приведения подобных слагаемых: u’x+u=u(1+lnu). Теперь раскрываем скобки

u’x+u=u+u·lnu. В обеих частях стоит u, отсюда u’x=u·lnu. Поскольку u — функция от икса, u’=du/dx. Подставляем,

Получили уравнение с разделяющимися переменными. Разделяем переменные, для чего обе части умножаем на dx и делим на x·u·lnu, при условии, что произведение x·u·lnu≠0

Интегрируем:

В левой части — табличный интеграл. В правой — делаем замену t=lnu, откуда dt=(lnu)’du=du/u

ln│t│=ln│x│+C. Но мы уже обсуждали, что в таких уравнениях вместо С удобнее взять ln│C│. Тогда

ln│t│=ln│x│+ln│C│. По свойству логарифмов: ln│t│=ln│Сx│. Отсюда t=Cx. (по условию, x>0). Пора делать обратную замену: lnu=Cx. И еще одна обратная замена:

По свойству логарифмов:

Это — общий интеграл уравнения.

Вспоминаем условие произведение x·u·lnu≠0 (а значит, x≠0,u≠0, lnu≠0, откуда u≠1). Но x≠0 из условия, остается u≠1, откуда x≠y. Очевидно, что y=x (x>0) входят в общее решение.

2) Найти частный интеграл уравнения y’=x/y+y/x, удовлетворяющий начальным условиям y(1)=2.

Сначала проверяем, что это уравнение является однородным (хотя наличие слагаемых y/x и x/y уже косвенно указывает на это). Затем делаем замену u=y/x, откуда y=ux, y’=(ux)’=u’x+x’u=u’x+u. Подставляем полученные выражения в уравнение:

u’x+u=1/u+u. Упрощаем:

u’x=1/u. Так как u — функция от икса, u’=du/dx:

Получили уравнение с разделяющимися переменными. Чтобы разделить переменные, умножаем обе части на dx и u и делим на x (x≠0 по условию, отсюда u≠0 тоже, значит, потери решений при этом не происходит).

Интегрируем:

и поскольку в обеих частях стоят табличные интегралы, сразу же получаем

Выполняем обратную замену:

Это — общий интеграл уравнения. Используем начальное условие y(1)=2, то есть подставляем в полученное решение y=2, x=1:

3) Найти общий интеграл однородного уравнения:

(x²-y²)dy-2xydx=0.

Замена u=y/x, откуда y=ux, dy=xdu+udx. Подставляем:

(x²-(ux)²)(xdu+udx)-2ux²dx=0. Выносим x² за скобки и делим на него обе части (при условии x≠0):

x²(1-u²)(xdu+udx)-2ux²dx=0

(1-u²)(xdu+udx)-2udx=0. Раскрываем скобки и упрощаем:

xdu-u²xdu+udx-u³dx-2udx=0,

xdu-u²xdu-u³dx-udx=0. Группируем слагаемые с du и dx:

(x-u²x)du-(u³+u)dx=0. Выносим общие множители за скобки:

x(1-u²)du-u(u²+1)dx=0. Разделяем переменные:

x(1-u²)du=u(u²+1)dx. Для этого обе части уравнения делим на xu(u²+1)≠0 (соответственно, добавляем требования x≠0 (уже отметили), u≠0):

Интегрируем:

В правой части уравнения — табличный интеграл, рациональную дробь в левой части раскладываем на простые множители:

(или во втором интеграле можно было вместо подведения под знак дифференциала сделать замену t=1+u², dt=2udu — кому какой способ больше нравится). Получаем:

По свойствам логарифмов:

Обратная замена

Вспоминаем условие u≠0. Отсюда y≠0. При С=0 y=0, значит, потери решений не происходит, и y=0 входит в общий интеграл.

Замечание

Можно получить запись решения в другом виде, если слева оставить слагаемое с x:

Геометрический смысл интегральной кривой в этом случае — семейство окружностей с центрами на оси Oy и проходящих через начало координат.

Задания для самопроверки:

1) (x²+y²)dx-xydy=0

1) Проверяем, что уравнение является однородным, после чего делаем замену u=y/x, откуда y=ux, dy=xdu+udx. Подставляем в условие: (x²+x²u²)dx-x²u(xdu+udx)=0. Разделив обе части уравнения на x²≠0, получаем: (1+u²)dx-u(xdu+udx)=0. Отсюда dx+u²dx-xudu-u²dx=0. Упростив, имеем: dx-xudu=0. Отсюда xudu=dx, udu=dx/x. Интегрируем обе части:



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: