Про заболевания ЖКТ

«Арзамасский Государственный Педагогический Институт им А. П. Гайдара»

Курсовая работа

по химии

Тема: Гальванические элементы

Выполнил: студент 5 курса

ЕГФ 52 гр. Б2 подгр. Ширшин Н.В.

Принял: Киндеров А.П.

План

Введение

I. История создания химических источников тока

II. Принцип действия

III. Классификация, устройство и принцип действия химических источников тока

1. Гальванический элемент

2. Электрические аккумуляторы

А) Щелочные аккумуляторы

3. Топливный элемент

А) Принцип действия

Б) Принцип разделения потоков топлива и горючего

В) Пример водородно-кислородного топливного элемента

Г) История исследований в России

Д) Применение топливных элементов

Е) Проблемы топливных элементов

IV. Эксплуатация элементов и батарей

V. Регенерация гальванических элементов и батарей

VI. Особенности некоторых видов гальванических элементов и их краткие характеристики

Заключение

Список использованной литературы


Введение

Химические источники тока в течении многих лет прочно вошли в нашу жизнь. В быту потребитель редко обращает внимание на отличия используемых химических источниках тока. Для него это батарейки и аккумуляторы. Обычно они используются в устройствах таких, как карманные фонари, игрушки, радиоприемники или автомобили. В том случае, когда потребляемая мощность относительно велика (10Ач), используются аккумуляторы, в основном кислотные, а также никель - железные и никель - кадмиевые. Они применяются в портативных электронных вычислительных машинах (Laptop, Notebook, Palmtop), носимых средствах связи, аварийном освещении и пр.

В силу ряда обстоятельств химические генераторы электрической энергии являются наиболее перспективными. Их преимущества проявляются через такие параметры, как высокий коэффициент выхода энергии; бесшумность и безвредность; возможность использования в любых условиях, в том числе в космосе и под водой, в стационарных и переносных устройствах, на транспорте и т.д.

В последние годы такие аккумуляторы широко применяются в резервных источниках питания ЭВМ и электромеханических системах, накапливающих энергию для возможных пиковых нагрузок и аварийного питания электроэнергией жизненно – важных систем.

Цели и задачи . В данной работе мне необходимо разобрать принцип действия гальванических элементов, познакомиться с историей их создания, особенностями классификации и устройством различных видов гальванических элементов, а также применением в тех или иных видов химических источников тока в повседневной жизни и различных сферах производства.


I . История создания химических источников тока

Химические источники тока (аббр. ХИТ) - устройства, в которых энергия протекающих в них химических реакций непосредственно превращается в электрическую энергию.

История создания

Вольтов столб

Первый химический источник тока был изобретён итальянским учёным Алессандро Вольта в 1800 году. Это был элемент Вольта - сосуд с солёной водой с опущенными в него цинковой и медной пластинками, соединенными проволокой. Затем учёный собрал батарею из этих элементов, которая в последствии была названа Вольтовым столбом. Это изобретение в последствии использовали другие учёные в своих исследованиях. Так, например, в 1802 году русский академик В. В. Петров сконструировал Вольтов столб из 2100 элементов для получения электрической дуги. В 1836 году английский химик Джон Дэниель усовершенствовал элемент Вольта, поместив цинковый и медный электроды в раствор серной кислоты. Эта конструкция стала называться «элементом Даниэля». В 1859 году французский физик Гастон Плантэ изобрёл свинцово-кислотный аккумулятор. Этот тип элемента и по сей день используется в автомобильных аккумуляторах. В 1865 году французский химик Ж. Лекланше предложил свой гальванический элемент (элемент Лекланше), состоявший из цинкового стаканчика, заполненного водным раствором хлористого аммония или другой хлористой соли, в который был помещён агломерат из оксида марганца(IV) MnO2 с угольным токоотводом. Модификация этой конструкции используется до сих пор в солевых батарейках для различных бытовых устройств. В 1890 году в Нью-Йорке Конрад Губерт, иммигрант из России, создаёт первый карманный электрический фонарик. А уже в 1896 году компания National Carbon приступает к массовому производству первых в мире сухих элементов Лекланше «Columbia».


II . Принцип действия

Устройство «багдадских батареек» (200 г. до н. э.).

Основу химических источников тока составляют два электрода (катод, содержащий окислитель и анод, содержащий восстановитель), контактирующих с электролитом. Между электродами устанавливается разность потенциалов - электродвижущая сила, соответствующая свободной энергии окислительно-восстановительной реакции. Действие химических источников тока основано на протекании при замкнутой внешней цепи пространственно разделённых процессов: на катоде восстановитель окисляется, образующиеся свободные электроны переходят, создавая разрядный ток, по внешней цепи к аноду, где они участвуют в реакции восстановления окислителя.

В современных химических источниках тока используются:

в качестве восстановителя (на аноде) - свинец Pb, кадмий Cd, цинк Zn и другие металлы;

в качестве окислителя (на катоде) - оксид свинца(IV) PbO2, гидроксид никеля NiOOH, оксид марганца(IV) MnO2 и другие;

в качестве электролита - растворы щелочей, кислот или солей.


III . Классификация, устройство и принцип действия

По возможности или невозможности повторного использования химические источники тока делятся на:

1. Гальванический элемент

Гальванический элемент - химический источник электрического тока, названный в честь Луиджи Гальвани. Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока. ЭДС гальванического элемента зависит от материала электродов и состава электролита. Это первичные ХИТ, которые из-за необратимости протекающих в них реакций, невозможно перезарядить.

Гальванические элементы являются источниками электрической энергии одноразового действия. Реагенты (окислитель и восстановитель) входят непосредственно в состав гальванического элемента и расходуются в процессе его работы. Гальванический элемент характеризуется ЭДС, напряжением, мощностью, емкостью и энергией, отдаваемой во внешнюю цепь, а также сохраняемостью и экологической безопасностью.

ЭДС определяется природой протекающих в гальваническом элементе процессов. Напряжение гальванического элемента U всегда меньше его ЭДС в силу поляризации электродов и потерь сопротивления:

U = Eэ – I(r1–r2) – ΔE,

где Еэ – ЭДС элемента; I – сила тока в режиме работы элемента; r1 и r2 – сопротивление проводников I и II рода внутри гальванического элемента; ΔЕ – поляризация гальванического элемента, складывающаяся из поляризаций его электродов (анода и катода). Поляризация возрастает с увеличением плотности тока (i), определяемой по формуле i = I/S, где S – площадь поперечного сечения электрода, и ростом сопротивления системы.

В процессе работы гальванического элемента его ЭДС и, соответственно, напряжение постепенно снижаются в связи с уменьшением концентрации реагентов и увеличением концентрации продуктов окислительно-восстановительных процессов на электродах (вспомним уравнение Нернста). Однако чем медленнее снижается напряжение при разряде гальванического элемента, тем больше возможностей его применения на практике. Емкостью элемента называют общее количество электричества Q, которое гальванический элемент способен отдать в процессе работы (при разрядке). Емкость определяется массой запасенных в гальваническом элементе реагентов и степенью их превращения. При увеличении тока разряда и снижении температуры работы элемента, особенно ниже 00С, степень превращения реагентов и емкость элемента снижаются.

Энергия гальванического элемента равна произведению его емкости на напряжение: ΔН = Q.U. Наибольшей энергией обладают элементы с большим значением ЭДС, малой массой и высокой степенью превращения реагентов.

Сохраняемостью называют продолжительность срока хранения элемента, в течение которого его характеристики остаются в заданных параметрах. С ростом температуры хранения и эксплуатации элемента, его сохраняемость уменьшается.

Состав гальванического элемента : восстановителями (анодами) в портативных гальванических элементах, как правило, служат цинк Zn, литий Li, магний Mg; окислителями (катодами) – оксиды марганца MnO2, меди CuO, серебра Ag2O, серы SO2, а также соли CuCl2, PbCl2, FeS и кислород О2.

Самым массовым в мире остается производство марганец–цинковых элементов Mn–Zn, широко применяемых для питания радиоаппаратуры, аппаратов связи, магнитофонов, карманных фонариков и т.п. Конструкция такого гальванического элемента представлена на рисунке

Токообразующими реакциями в этом элементе являются :

На аноде (–): Zn – 2ē → Zn2+ (на практике происходит постепенное растворение цинковой оболочки корпуса элемента);

На катоде (+): 2MnO2 + 2NH4+ + 2ē → Mn2O3 + 2NH3 + H2O.

В электролитическом пространстве также идут процессы:

У анода Zn2+ + 2NH3 →2+;

У катода Mn2O3 + H2O → или 2.

В молекулярном виде химическую сторону работы гальванического элемента можно представить суммарной реакцией:

Zn + 2MnO2 + 2NH4Cl → Cl2 + 2.

Схема гальванического элемента:

(–) Zn|Zn(NH3)2]2+|||MnO2 (С) (+).

ЭДС такой системы составляет Е= 1,25 ÷ 1,50В.

Сегодня гальванические элементы являются одними из наиболее распространенных химических Несмотря на их недостатки, они активно используются в электротехнике и постоянно совершенствуются.

Принцип действия

Наиболее простой пример работы гальванического элемента выглядит так. В стеклянную банку с водным раствором серной кислоты погружают две пластины: одна - медная, вторая - цинковая. Они становятся положительным и отрицательным полюсами элемента. Если эти полюса соединить проводником, получится простейшая Внутри элемента ток будет течь от цинковой пластины, имеющей отрицательный заряд, к медной, заряженной положительно. Во внешней цепи движение заряженных частиц будет происходить в обратном направлении.

Под действием тока ионы водорода и кислотного остатка серной кислоты будут двигаться в разных направлениях. Водород будет отдавать свои заряды медной пластине, а кислотный остаток - цинковой. Так на зажимах элемента будет поддерживаться напряжение. В то же время на поверхности медной пластины будут оседать пузырьки водорода, который будет ослаблять действие гальванического элемента. Водород создает вместе с металлом пластины дополнительное напряжение, которое называется электродвижущей силой поляризации. Направление заряда этой ЭДС противоположно направлению заряда ЭДС гальванического элемента. Сами же пузырьки создают дополнительное сопротивление в элементе.

Рассмотренный нами элемент - это классический пример. В реальности подобные гальванические элементы просто не используются из-за большой поляризации. Чтобы она не происходила, при изготовлении элементов в их состав вводят специальное вещество, поглощающее атомы водорода, которое называется деполяризатором. Как правило, это препараты, содержащие кислород или хлор.

Преимущества и недостатки современных гальванических элементов

Современные гальванические элементы изготавливаются из разных материалов. Наиболее распространенный и знакомый нам тип - это угольно-цинковые элементы, применяемые в пальчиковых батарейках. К их плюсам можно отнести относительную дешевизну, к минусам - небольшой срок хранения и невысокую мощность.

Более удобный вариант - это щелочные гальванические элементы. Их еще называют марганцево-цинковыми. Здесь электролитом служит не сухое вещество типа угля, а щелочной раствор. Разряжаясь, такие элементы практически не выделяют газ, благодаря чему их можно изготавливать герметичными. Срок хранения таких элементов выше, чем угольно-цинковых.

Ртутные элементы похожи по своей конструкции на щелочные. Здесь применяют оксид ртути. Такие источники тока используют, например, для медицинской аппаратуры. Их преимущества - устойчивость к высоким температурам (до +50, а в некоторых моделях до +70 ˚С), стабильное напряжение, высокая механическая прочность. Недостаток - токсичные свойства ртути, из-за которых с отработавшими свой срок элементами нужно обращаться очень осторожно и отправлять на переработку.

В некоторых элементах применяют оксид серебра для изготовления катодов, но из-за дороговизны металла их использование экономически невыгодно. Более распространены элементы с литиевыми анодами. Они тоже отличаются высокой стоимостью, но имеют наибольшее напряжение среди всех рассмотренных типов гальванических элементов.

Еще один тип гальванических элементов - это концентрационные гальванические элементы. В них процесс движения частиц может протекать с переносом и без переноса ионов. Первый тип - это элемент, в котором два одинаковых электрода погружаются в разной концентрации, разделенные полупроницаемой перегородкой. В таких элементах ЭДС возникает благодаря тому, что ионы переносятся в раствор с меньшей концентрацией. В элементах второго типа электроды сделаны из разных металлов, а концентрация выравнивается за счет химических процессов, которые происходят на каждом из электродов. у этих элементов выше, чем у элементов первого типа.

Гальванический элемент

Схема гальванического элемента Даниэля-Якоби

Гальвани́ческий элеме́нт - , основанный на взаимодействии двух металлов и (или) их оксидов в электролите , приводящем к возникновению в замкнутой цепи электрического тока. Назван в честь Луиджи Гальвани .

Явление возникновения электрического тока при контакте разных металлов было открыто итальянским физиологом , профессором медицины Болонского университета Луиджи Гальвани в 1786 году. Гальвани описал сокращения мышц задних лапок свежепрепарированной лягушки, закрепленных на медных крючках, при прикосновении стального скальпеля . Наблюдения были истолкованы первооткрывателем как проявление «животного электричества».

Электрохимические генераторы (топливные элементы) - это элементы, в которых происходит превращение химической энергии в электрическую. Окислитель и восстановитель хранятся вне элемента, в процессе работы непрерывно и раздельно подаются к электродам. В процессе работы топливного элемента электродые не расходуются. Восстановителем является водород (H 2), метанол (CH 3 OH), метан (CH 4) в жидком или газообразном состоянии. Окислителем обычно является кислород воздуха или чистый. В кислородно-водородном топливном элементе со щелочным электролитом происходит превращение химической энергии в электрическую. Энергоустановки применяются на космических кораблях, они обеспечивают энергией космический корабль и космонавтов.

Применение

  • Батарейки используются в системе сигнализации, фонарях, часах, калькуляторах, аудиосистемах, игрушках, радио, автооборудовании, пультах дистанционного управления.
  • Аккумуляторы используются для запуска двигателей машин, возможно так же и применение в качестве временных источников электроэнергии в местах, удаленных от населенных пунктов.
  • Топливные элементы применяются в производстве электрической энергии (на электрических станциях), аварийных источниках энергии, автономном электроснабжении, транспорте, бортовом питании, мобильных устройствах.

См. также

Литература

  • Ахметов Н.С. Общая и неорганическая химия
  • Аксенович Л. А. Физика в средней школе: Теория. Задания.

Ссылки

Гальванический элемент - это химический источник тока, в котором энергия, выделяющаяся при протекании на электродах окислительно-восстановительной реакции, непосредственно преобразуется в электрическую энергию.

Рис. 9.2. Схема гальванического элемента Даниэля - Якоби

Здесь I - стакан, содержащий раствор ZnSO 4 в воде с погруженной в него цинковой пластинкой; II - стакан, содержащий раствор CuSO 4 в воде с погруженной в него медной пластинкой; III - солевой мостик (электролитический ключ), который обеспечивает перемещение катионов и анионов между растворами; IV - вольтметр (нужен для измерения ЭДС, но в состав гальванического элемента не входит).

Стандартный электродный потенциал цинкового электрода . Стандартный электродный потенциал медного электрода . Так как , то атомы цинка будут окисляться:

Электрод, на котором идет реакция восстановления или которыйпринимает катионы из электролита , называется катодом.

Через электролитический ключ происходит движение ионов в растворе: анионов SO 4 2- к аноду, катионов Zn 2+ к катоду. Движение ионов в растворе замыкает электрическую цепь гальванического элемента.

Реакции (а) и (б) называются электродными реакциями.

Складывая уравнения процессов, протекающих на электродах, получаем суммарное уравнение окислительно-восстановительной реакции, протекающей в гальваническом элементе:

В общем случае, суммарное уравнение окислительно-восстановительной реакции, протекающей в произвольном гальваническом элементе, можно представить в виде:

Схема гальванического элемента Даниэля - Якоби имеет вид:

Zn | ZnSO 4 || CuSO 4 | Cu

Максимальная разность потенциалов электродов, которая может быть получена при работе гальванического элемента, называется электродвижущей силой (ЭДС) элемента Е . Она вычисляется по формуле;

где n - число электронов в элементарном окислительно-восстановительном акте, F - число Фарадея.

Величина изменения изобарно-изотермического потенциала токообразующей реакции при стандартных условиях?G 0 связана с константой равновесия этой реакции К равн соотношением

(9.6)

Гальванические элементы являются первичными (однократно используемыми) химическими источниками тока (ХИТ). Вторичными (многократно используемыми) ХИТ являются аккумуляторы. Процессы, протекающие при разряде и заряде аккумуляторов, взаимнообратны.

Гальванические элементы, у которых электроды выполнены из одного и того же металла и опущены в растворы своих солей разной концентрации, называются концентрационными . Функцию анода в таких элементах выполняет металл, опущенный в раствор соли с меньшей концентрацией, например:

Пример 1. Составьте схему гальванического элемента, в основе которого лежит реакция: Mg + ZnSO 4 = MgSO 4 + Zn. Что является катодом и анодом в этом элементе? Напишите уравнения процессов, протекающих на этих электродах. Рассчитайте ЭДС элемента при стандартных условиях. Вычислите константу равновесия для токообразующей реакции.

Гальванический элемент - это химический источник электрического тока, основанный на взаимодействии двух металлов и/или их оксидов в электролите, названный в честь итальянского учёного Луиджи Гальвани.

Позднее учёный собрал батарею из медно-цинковых элементов, которая впоследствии была названа Вольтовым столбом (см. рисунок). Он представлял собой несколько десяткой цинковых и медных кружков, сложенных попарно и разделённых сукном, пропитанным кислотой. Это изобретение впоследствии использовали другие учёные в своих исследованиях. Так, например, в 1802 году русский академик В. В. Петров сконструировал гигантскую батарею из 2100 элементов, которая создавала напряжение около 2500 вольт и использовалась для получения мощной электрической дуги, которая создавала столь высокую температуру, что могла плавить металлы.

Существуют гальванические элементы и других конструкций. Рассмотрим ещё один медно-цинковый гальванический элемент, но работающий за счет энергии химической реакции между цинком и раствором сульфата меди (элемент Якоби-Даниэля). Этот элемент состоит из медной пластины, погруженной в раствор сульфата меди, и цинковой пластины, погруженной в раствор сульфата цинка (см. рисунок). Оба раствора соприкасаются друг с другом, но для предупреждения смешивания они разделены перегородкой-мембраной, изготовленной из пористого материала.

Ещё одна разновидность гальванических элементов - так называемые «сухие» марганец-цинковые элементы Лекланше (см. рисунок). Вместо жидкого электролита в таком элементе используется гелеобразная паста из нашатыря и крахмала. Чтобы влага испарялась как можно меньше, верх такого элемента заливается воском или смолой с небольшим отверстием для выхода газов. Обычно элементы Лекланше изготавливаются в цилиндрических стаканчиках, которые одновременно служат и отрицательным электродом и сосудом.
Все химические источники тока (гальванические элементы и батареи из них) делятся на две группы - первичные (одноразовые) и вторичные (многоразовые или обратимые). В первичных источниках тока (в просторечии - батарейках) химические процессы протекают необратимо, поэтому их заряд нельзя восстановить. К вторичным химическим источникам тока относят аккумуляторы, их заряд можно восстановить. Для широко распространённых аккумуляторов цикл заряд-разряд можно повторять около 1000 раз.

Батарейки имеют различное напряжение и ёмкость. К примеру, традиционные щелочные батарейки имеют номинальное напряжение около 1,5 В, а более современные литиевые - около 3 В. Электрическая ёмкость зависит от множества факторов: количества элементов в батарее, уровня зарядки, температуры окружающей среды, тока отсечки (при котором устройство не работает даже при имеющемся заряде). Например, батарейка, которая уже не работает в фотоаппарате, зачастую продолжает работать в часах или пультах управления.
Количество электричества (заряд) в батарейках измеряется в ампер-часах. Например, если заряд батарейки равен 1 ампер-часу, а электрический прибор, который она питает, требует тока 200 мА, то срок действия батарейки вычислится так: 1 А·ч / 0,2 А = 5 часов.
Благодаря техническому прогрессу увеличилось разнообразие миниатюрных устройств, работающих от батареек. Для многих из них потребовались более мощные элементы питания, при этом достаточно компактные. Литиевые батарейки стали ответом на такую потребность: долгий срок хранения, высокая надёжность и отличная работоспособность в широком диапазоне температур. На сегодняшний день самыми передовыми являются литий-ионные источники тока. Потенциал данной технологии ещё не раскрыт полностью, но ближайшие перспективы связаны с ними.

Особую ценность в технике представляют никель-кадмиевые аккумуляторы, изобретённые еще в 1899 году шведским учёным В.Юнгнером. Но только к середине XX века инженеры пришли к почти современной схеме таких герметичных аккумуляторов. Благодаря компактности и автономности, аккумуляторные батареи используются в автомобилях, поездах, компьютерах, телефонах, фотоаппаратах, видеокамерах, калькуляторах и др.
Основными характеристиками аккумулятора являются ёмкость и предельная сила тока. Ёмкость батареи в ампер-часах равна произведению предельного тока на продолжительность разрядки. Например, если батарея может давать ток силой 80 мА в течение 10 часов, то ёмкость: 80 мА · 10 ч = 800 мА·ч (или, в международных обозначениях 800 mAh, см. рисунок).

Кузнецова Алла Викторовна (г. Самара)



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: