Про заболевания ЖКТ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

«История становления и развития антибиотикотерапии»

Введение

Жизнь против жизни

Заключение

Список литературы

Введение

Ценность антибиотиков как лекарств ни у кого не вызывает сомнения. Почти каждый взрослый человек испытал их целебное действие на себе. Кому они помогли выздороветь, а кому и спасли жизнь. Антибиотики совершенно изменили структуру заболеваемости -- острозаразные болезни, гнойные заболевания, воспаление легких, еще совсем недавно бывшие основной причиной смерти людей, теперь отодвинуты на задний план. Антибиотики преобразили хирургию, создав условия для выполнения сложных операций, позволили резко снизить детскую смертность. Они преобразовали животноводство, растениеводство, целые отрасли пищевой промышленности. Среднегодовой прирост объема потребления антибиотиков в развитых странах составляет 7--9% и пока тенденция к спаду не предвидится.

Жизнь против жизни

Все началось с обычной зеленой плесени. Первым, кто описал удивительные свойства зеленоватого пушистого налета, неведомо откуда поселяющегося на забытых пищевых остатках, был профессор Военно-медицинской академии В. А. Монассейн. Его статья «Об отношении бактерий к зеленому кистевику и о влиянии некоторых средств на развитие этого последнего», в котором рассказывалось о способности плесени убивать микробов, появилась в печати более ста лет назад -- в 1871 г. Через год в статье «Патологическое значение плесени» профессор А. Г. Полотебнов сообщил о своих попытках использовать плесень для лечения гнойных ран. Позднее способность одних микроорганизмов подавлять рост и размножение других была описана многими авторами. Луи Пастер, наблюдавший борьбу между микробами, предсказывал использование этого явления с целью лечения больных.

В 1896 г. итальянский врач Б. Гозио, изучавший причины поражения риса плесенью, выделил культуру зеленоватого микроскопического гриба. Жидкая среда, в которой рос этот гриб, оказывала губительное действие на бактерии сибирской язвы. Фактически в руках Б. Гозио был первый в мире антибиотик, однако он не получил практического применения и был забыт. Немецкие ученые Р. Эммерих и О. Лев из культуры синегнойной палочки (по-латыни она называется пиоцианеум) получил препарат пиоцианазу, который пытались использовать для лечения ран. Одновременно советский ученый Н. Ф. Гамалея из культуры той же палочки получил препарат пиокластин. Однако из-за непостоянства лечебного эффекта этих препаратов их вскоре перестали применять. В 1913 г. в Америке микробиологи Альсберг и Блек получили антибиотическое вещество из культуры гриба, принадлежавшего к семейству пенициллиумов. Они назвали это вещество пенициллиновой кислотой и собирались применить в клинике, но из-за начала первой мировой войны исследования остались незавершенными.

В 1889 г. француз Вюльмен, собрав все сведения о взаимном влиянии микробов, сформулировал очень важное положение «Когда два живых тела тесно соединяются, и одно из них оказывает разрушительное действие на другое, можно сказать, что происходит антибиоз» (от греч. «анти» -- против, «биос» -- жизнь). Так было произнесено слово, от которого произошло название «антибиотики» -- вещества, вырабатываемые одним живым организмом для разрушения другого живого организма. Борьба живого с живым оказалась очень выгодна для человека.

Самое выдающееся медицинское открытие XX века было сделано в один из сентябрьских дней 1928 года в крохотной лаборатории, теснящейся под лестницей. Вряд ли оно было случайным, как принято думать: Александр Флеминг, бактериолог лондонской больницы Святой Марии, шел к нему более полутора десятков лет -- и все-таки, наверное, было бы несправедливо вовсе отвергать элемент случайности в этом открытии.

Впоследствии Прайс, ставший известным ученым, так напишет об этом дне: «Меня поразило, что Флеминг не ограничился наблюдениями, а тотчас же принялся действовать. Многие, обнаружив какое-нибудь явление, чувствуют, что оно может быть замечательным, но лишь удивляются и вскоре забывают о нем. Флеминг был не таков...»

Что такое плесень? Это растительные организмы, крошечные грибки, размножающиеся в сырых местах. Внешне плесень напоминает войлочную массу белого, зеленого, коричневого и черного цвета. Вырастает плесень из спор -- микроскопических живых организмов, невидных невооруженным глазом. Микологии -- науке о грибах -- известны тысячи разновидностей плесени. Грибок, так заинтересовавший Флеминга, назывался Penicillium notatum. Впервые он был найден шведским фармакологом Вестлингом на сгнивших листах кустарника иссопе.

В тот день он перебирал в своей маленькой лаборатории чашки Петри со старыми культурами бактерий. Эти чашки, названные по имени их изобретателя, похожи на коробочки, в которых продается гуталин. Они только пошире и сделаны из стекла. Чашки заполняют обезжиренным бульоном с добавлением особого вещества агар-агара, получаемого из морских водорослей. Благодаря агар-агару, который очень напоминает желатин, бульон застывает и образует твердый студень. Для человека такой студень не слишком привлекателен, а для микробов -- лакомое блюдо. Стоит на поверхность студня попасть хоть одному микробу, как он начинает быстро размножаться. Особенно быстро размножение микробов происходит при температуре человеческого тела -- 37°С. Поэтому чашки Петри, после того как на них посеят микробы, ставят в специальные шкафы (термостаты), поддерживающие нужную температуру. Через сутки каждый микроб, многократно разделившись, превратится в небольшое микробное селение -- колонию. Похожа такая колония на круглую бляшку -- налет на агаре. Опытный микробиолог уже по форме, цвету и характеру поверхности колонии может определить тип микроба.

Доктор Флеминг, просматривая старые посевы, ворчал. Поскольку крышки в процессе работы многократно открывались, во многие из них залетали посторонние микробы. Особенно мешала плесень, для развития и роста которой высокая температура не требуется. Если в чашку попал один плесневый гриб, то он начинает расти, постепенно наплывая на более ранние культуры. пенициллин плесень аллергия медицина

Но вдруг Флеминг остановился. Что такое? В одной из чашек плесени вроде бы и не много, но культуры стафилококков -- микробов, вызывающих нагноения, -- вокруг нее исчезли. Они как бы растворились. Дальше шли сильно измененные колонии, желтоватые бляшки превратились в прозрачные капельки. И только совсем у края чашки сохранилось несколько микробных поселений.

Пробурчав под нос: «Это очень интересно», -- Флеминг соскоблил часть плесени и бросил в бутылку с бульоном. Через несколько дней в бутылке из отдельных крошечных грибов выросли нити, которые, разветвляясь, образовали сплошную волокнистую массу. На вид это была обычная ничем не примечательная плесень, которая вырастает на забытой корке хлеба или завалявшихся фруктах.

Позднее Флеминг ставил решающий опыт. В центре чашки он поместил маленький кусочек плесени, а вокруг -- по капельке разных бактерий. Капельки он размазал по студню в виде лучей, идущих от центра. Через пару дней и плесень, и бактерии размножились. Подавляя дрожь в руках, исследователь поднес чашку к свету и сразу увидел, что опыт удался. За счет массы бактерий лучи стали хорошо видны. Но некоторые из них проросли полностью, а другие только у края чашки. Плесень убила их на расстоянии нескольких сантиметров. Самым примечательным было то, что эта плесень -- «пенициллиум нотатум», таково было ее научное название, выделяла яд, который действовал губительно на микробов, особо опасных для человека. Погибли стрептококки, вызывающие воспаление в горле, стафилококки, вызывающие нагноения, пневмококки, вызывающие воспаление легких, погибли дифтерийные палочки и даже палочки сибирской язвы -- страшной болезни, спасения от которой не было. Но может быть яд, выделяемый плесенью, опасен и для самой человека? Бульон из бутылки отфильтровывается и вводится мыши. Никаких признаков отравления не наблюдается. Вместе с тем достаточно капнуть этот бульон в стакан с чистой культурой микробов, как все они погибают.

Все хорошо, но бульон нельзя вводить человеку ни под кожу, ни в мышцу, ни тем более в вену. Именно поэтому Флеминг предложил использовать его для лечения ран.

Вот эта работа и вызвала неудовольствие всемирно известного микробиолога, действительного члена многих академий и научных обществ, профессора Лондонского университета сэра Алмрот Эдуард Райта. В один из ноябрьских дней 1929 г. Райт был сердит как никогда. Самое худшее, что сердиться приходилось на одного из своих любимых учеников, доктора Александра Флеминга, который, несмотря на постоянные споры с учителем, пока не доставлял ему огорчения. Сегодня утром Флем, как звали Флеминга в лаборатории, принес на подпись статью, в которой значилось: «Определенный вид пенициллиум (плесневого гриба) вырабатывает в питательной среде мощное антибактериальное вещество». И дальше: «Предлагается применить его в качестве эффективного антисептика -- противогнилостного средства».

Как? Разве он, Райт, не доказал, что при лечении инфекционных и других болезней, вызываемых микробами, следует полагаться только на защитные силы самого организма и предохранительные прививки? Разве не с этим упорным шотландцем в годы первой мировой войны они доказали, что все (!!!) вещества, в том числе и карболовая кислота, убивающая микробы в пробирке, на хирургических инструментах и вообще на предметах, не способствуют, а препятствуют заживлению ран. Как не понять, что любой способ воздействия на микробы (холод, огонь, яд) обязательно должен приводить также и к гибели клеток человеческого тела. Такие вещества могут быть применены разве что на коже, которая защищена от губительного действия яда слоем роговых чешуек. «Кажется я достаточно четко писал, -- думал Райт, -- что лечение инфекционных заболеваний у человека путем введения в организм химических синтетических веществ (химиотерапия) невозможно и никогда не будет осуществлено. Флема сбил с истинного пути фантазер Пауль Эрлих. Ну, не фантазия ли? Этот австриец хочет создать такое лекарство, которое, будучи введено в кровь человека, сумело бы распознавать среди его клеток врага, миновало бы, обошло клетки тела хозяина, нашло и убило незваного микробного пришельца. Не зря Эрлих назвал свою мечту «волшебной пулей». Это действительно больше похоже на волшебство, чем на серьезную науку. Конечно, Флем начнет напоминать мне о хинине и эрлиховском сальварсане. Но что из того? Они излечивают малярию и сонную болезнь! Ведь эти болезни вызывают не настоящие микробы. Причина их -- плазмодий и трипаносомы, которые хотя действительно очень просты по строению, но все же представляют собой маленьких животных, устроенных намного сложнее, чем бактерии. Одно дело стрелять волшебной пулей в слона, окруженного охотниками, другое дело в комара, сидящего у охотника на носу».

Недовольство статья вызвала не только Райта. Даже после опубликования, статья не вызвала у медиков никакого энтузиазма. А все потому, что пенициллин оказался очень нестойким веществом. Он разрушался уже при самом кратковременном хранении, а тем более при попытке выпарить содержащий его бульон. Когда в 1939 г. Флеминг обратился за помощью в Лондонское химическое общество, то получил ответ: «Вещество слишком нестойкое и с химической точки зрения не заслуживает никакого внимания».

Может быть в том, что на пенициллин долго не обращали внимания, частично был виноват сам Флеминг. Он не был хорошим оратором, способным увлечь своей идеей окружающих. Вот что он пишет сам: «Об этом явлении чрезвычайной важности было напечатано в 1929 г. ...Я говорил о пенициллине в 1936 году..., но не был достаточно красноречив, и мои слова прошли незамеченными». А говорил-то не где-нибудь, а с трибуны Международного съезда микробиологов!

Приближение войны заставило многих ученых пересмотреть характер своих занятий. Руководитель кафедры патологии Оксфордского университета профессор Г. Флори со своими помощниками решили начать изыскание нового лекарства для борьбы с микробами. Нельзя сказать, что в 1939 г. выбор их был богат, однако поиски можно было начинать не на абсолютно пустом месте. В 1936 г. немецким ученым Домагком был получен красный стрептоцид, который, конечно, можно было усовершенствовать. Была пиоционаза, был, наконец, лизоцим, антибиотик, содержащийся в слюне и слезах человека, открытый тем же Флемингом в 1922 г. Однако выбор пал на плесневый гриб. Может быть потому, что один из основных помощников профессора Э. Чейн был биохимиком и предполагал, что действующим началом культуры плесени является фермент?

Вначале Чейна преследовали неудачи. Едва удалось обнаружить в растворе пенициллин, как последний бесследно исчез. Прежде всего, был установлен факт, что пенициллин сохраняется в щелочных растворах, в слабом растворе соды, например. Было выявлено и другое свойство этого неуловимого вещества -- его способность переходить в эфир. Чейн ставил раствор в ящик со льдом. Пенициллин смешивался с эфиром, и в сосуде образовывалось два слоя. Чейн удалял водяной слой. В сосуде оставался пенициллин, растворенный в эфире. Для того чтобы сохранить его, добавлялась щелочь, и реакция шла в обратном направлении -- пенициллин переходил в щелочной раствор. Вода осторожно выпаривалась, и на дне сосуда оставалась слизистая масса, содержащая в себе пенициллин. Чейн замораживал ее, потом высушивал и, наконец, получал ничтожное количество коричневого порошка. Это и был пенициллин.

Первые же опыты с веществом, выделенным Чейном из плесневого бульона, буквально ошеломили ученых. Хитли разводил его в сотни тысяч раз, и всего лишь одной капли этого раствора оказывалось достаточно, чтобы остановить рост самых патогенных микробов, засеянных в чашках Петри. Пенициллин оказался в МИЛЛИОН раз активнее, чем плесневой фильтрат, с которым экспериментировал Флеминг.

Уже через год оксфордская группа ученых получила первые порции препарата. По правде говоря, пенициллина в той желтоватой жидкости, которую демонстрировали радостные ученые своим коллегам, содержалось всего 1%. Но все же это было лекарство. Сначала с его помощью были излечены мыши, зараженные смертельной дозой стафилококка, а потом очередь дошла и до человека. 12 февраля 1941 г. с помощью пенициллина была сделана попытка спасти мужчину, который погибал от заражения крови. Он неосторожно расковырял ранку в углу рта, и теперь был обречен на смерть. Несколько инъекций пенициллина в течение одного дня улучшили его состояние, однако имеющегося количества пенициллина оказалось недостаточным. Таким образом, спасти первого больного не удалось.

Несмотря на трагический исход, ценность препарата стала совершенно очевидной, что и было отмечено во всех газетах Англии. Газета «Тайме» поместила статью А. Райта: «Лавровый венок должен быть присужден Александру Флеммингу. Это он первым открыл пенициллин и первый предсказал, что это вещество может найти широкое применение в медицине». Профессор вместе со всем человечеством склонил голову пред своим гениальным учеником.

Дальнейший путь пенициллина, тем не менее, отнюдь не был усыпан розами. Несмотря на то, что война уже шла, и кругом миллионы людей погибали от гнойных ран, правительство Великобритании не хотело раскошелиться на строительство специального завода, отговариваясь тем, что якобы Англия подвергается слишком усиленным бомбежкам. Может быть, дела так и не сдвинулись с мертвой точки, если бы не энергия и не активность сотрудника Флеминга Г. Флори. Он быстро нашел и деньги для работы, и людей, которые ему помогли, в США. Исследования закипели. Для получения более активного гриба, выделяющего пенициллин в достаточных количествах, была организована доставка образцов плесени не то что изо всех уголков страны, но и со всех частей света. Самое забавное в том, что найдена такая плесень была буквально под самым носом, она росла на дыне, принесенной с городской свалки. Вскоре дело продвинулось так далеко, что был начат промышленный выпуск пенициллина.

Первым человеком, вылеченным с помощью пенициллина, была маленькая девочка, болезнь которой началась с горла, а потом распространилась на сердце. Микробы, которые вызвали у нее ангину, проникли в кровь и осели на внутренней оболочке сердечной мышцы. Как и всех других больных, пораженных таким недугом, ее ждала неминуемая смерть. Врач, который лечил девочку, упросил Флори дать ему пенициллин. Хотя никто о таком применении пенициллина раньше не думал, но очень уж жаль было девочку. Раствор пенициллина был введен ей, когда она уже умирала. Полученный эффект превзошел все ожидания -- девочке сразу стало лучше, и она стала поправляться.

Вскоре после этого случая Флеминг сам впервые ввел раствор пенициллина в спинномозговой канал своему другу, который заболел гнойным воспалением мозговых оболочек. Неминуемая, казалось бы, смерть отступила и на этот раз. Потом уже пенициллином начали лечить английских летчиков, получивших ранения в воздушных боях над Лондоном. Под влиянием антибиотика гнойные раны очищались, ожоги зарастали кожей, гангрена отступала. Действие лекарства было похоже на мановение волшебной палочки.

Первооткрыватели пенициллина Флеминг, Флори и Чейн, понимая все значение этого лекарства для человечества, не засекретили свое лекарство, как это обычно делается, однако каждая страна должна была получить свой пенициллин. В Советском Союзе эту трудную и почетную работу выполнила Зинаида Виссарионовна Ермольева со своими помощниками. Под бомбежками, в тяжелых условиях военного времени, были собраны образцы плесени, и каждый из них испытан на способность выделять пенициллин. Наконец, полученный гриб, который оказался даже лучше американского, но назывался не нотатум, а крустозум, помещен в ферментатор. В кратчайшие сроки выпуск пенициллина был налажен в промышленных масштабах, и первые его порции начали поступать в госпитали и непосредственно на фронт. Вместе со своим лекарством отправилась на фронт и профессор З. В. Ермольева. Там, на поле боя, нашлось новое применение пенициллину -- предупреждение нагноения. Рана только что получена, гноя еще нет, но микробы уже внутри раны, вместе с осколком, землей, обрывками одежды. Если пенициллин ввести сразу после ранения, то и размножения микробов не происходит -- рана зарастает без всяких осложнений. Благодаря новому методу, врачи сумели не просто вылечить, а возвратить в строй 72% раненых! Пенициллин, таким образом, тоже воевал.

Сорок лет назад был осуществлен первый промышленный выпуск пенициллина. С этого же времени и поныне продолжается его триумфальное шествие по земному шару. А человек, открывший новую эпоху в жизни человечества, был необычайно скромен. В 1945 г. по поводу вручения ему Нобелевской премии Флеминг сказал: «Мне говорят, что я изобрел пенициллин. Нет, я только обратил на него внимание людей и дал ему название».

Когда в 1945 г. Американская медицинская ассоциация поставила перед учеными вопрос: «Какое лекарство вы считаете наиболее ценным?», то 99% опрошенных ответили: «Антибиотики». Но ведь это было только начало. Весну делали только первые ласточки-. В 1945 г. был открыт четвертый антибиотик -- хлортетрациклин, а 1947 г. -- пятый -- левомицетин, а уже к 1950 г. было описано более 100 антибиотиков. В 1955 г. их было уже более 500. Сейчас открыто и изучено примерно 4000 соединений, причем 60 из них нашли широкое применение в медицине. Среди этого набора можно найти антибиотики, которые действуют на микробов, вызывающих нагноение, и на микробов, повинных в заболевании легких, и на микробов, поселяющихся в желудочно-кишечном тракте. Есть антибиотики, пригодные для лечения детей и для лечения стариков.

Кстати сказать, многие из них выделены из земли. Советский ученый Н. А. Красильников, изучив свойства бактерий чуть ли не всех областей нашей страны, обнаружил, что наиболее богаты производителями антибиотиков земли Казахстана -- в каждом грамме пахотной земли содержится 380 000 микроскопических фармацевтических фабрик. Так что кладовая антибиотиков не исчерпана.

И все же, несмотря на достоинства новых препаратов, пенициллин до сих пор остается самым распространенным. Только в США этот препарат ежегодно выпускается в количестве 1500 т! Почему?

Во-первых, он очень активен. Судите сами. Для того чтобы подавить жизнедеятельность микроба в ведре воды, в него нужно добавить не менее 10 г карболовой кислоты (она обычно используется как стандарт) или 1 г фурациллина, или 0,1 г норсульфазола, или 0,01 г пенициллина. Речь идет, разумеется, о чувствительных к этим препаратам микробах. Но главное, пожалуй, все же не активность, так как существуют другие не менее активные антибиотики.

Во-вторых, и это главное, пенициллин почти совсем не оказывает на человека токсического действия. Обычно для оценки степени ядовитости того или иного вещества определяют его смертельную дозу для мышей. Чем больше эта доза, тем вещество менее ядовито. Так вот, чтобы вызвать гибель мыши, ей необходимо ввести внутривенно один из следующих антибиотиков: нистатин в дозе 0,04 мг, грамицидин -- 0,4 мг, тетрациклин -- 1 мг, стрептомицин -- 5 мг, а пенициллин -- 40 мг. Учитывая, что человек в 3500 раз больше мыши, то в 1 мг содержится 1660 ЕД (единица действия) пенициллина, что самые большие ампулы препарата, используемые лишь при крайне тяжелых заболеваниях, содержат по 1 000 000 ЕД, не трудно подсчитать опасную для человека дозу. Она содержится в 233 ампулах при условии, что содержимое этих ампул будет вводиться единовременно. Согласитесь, что это говорит о полной безвредности пенициллина.

В-третьих, пенициллин можно назначать не только взрослым, но и детям, он безопасен и для беременных женщин, чего нельзя сказать о других антибиотиках. Некоторые из них, например левомицетин, просто запрещено назначать новорожденным, другие назначают с большой осторожностью и по особым показаниям. Стрептомицин, неомицин и подобные им антибиотики вызывают у людей глухоту, поражая слуховой нерв. Дети обладают повышенной чувствительностью к стрептомицину, а обнаружить начальные стадии поражения нерва у них труднее, чем у взрослых. Как ни стараются ограничить его применение, а все же 12% глухонемых детей являются жертвами стрептомицина. Тетрациклин опасен для беременных женщин. В первые месяцы беременности он может вызвать возникновение уродства плода, а при приеме в последние месяцы -- отложиться в костях и зачатках зубов будущего ребенка. Кости с тетрациклином медленнее растут, а зубы окрашиваются в коричневый цвет и быстрее портятся. По этой же причине тетрациклин стараются не назначать детям до 5 лет.

Как ни хорош пенициллин, но и он не идеален в отношении безвредности. Оказывается, что при повторном применении у людей развивается к нему не только повышенная, но и извращенная чувствительность. Такое состояние в медицине носит название аллергии. Чем дольше пенициллин применяется, тем больше становится аллергизированных людей, которым он противопоказан.

Кроме того, пенициллин действует лишь на сравнительно небольшое число микробов, а потому эффективен лишь при строго определенных болезнях. Набор микроорганизмов, которые могут быть обезврежены при применении антибиотиков, называется спектром их действия. У пенициллина спектр противомикробного действия намного уже, чем, скажем, у тетрациклина. Это является его недостатком.

Самый же большой недостаток пенициллина состоит в том, что микробы к нему сравнительно быстро привыкают. Если в первые годы его действие напоминало мановение волшебной палочки, чудо, воскрешение из мертвых, то теперь такие чудесные выздоровления встречаются все реже. Иногда приходится слышать, что пенициллин «ныне пошел не тот». Это неверно. Пенициллин тот же, но микробы стали другие. Они научились вырабатывать особое вещество, фермент, который разрушает пенициллин. Называется он пенициллиназа. Если микроб вырабатывает пенициллиназу, то пенициллин на него не действует.

Особенно быстро устойчивость к пенициллину развивается у стафилококков, которые образно называют «чумой XX века». За годы, прошедшие с начала применения пенициллина, их чувствительность к этому антибиотику снизилась в 2000 раз! В 1944 г. только 10% штаммов стафилококков были устойчивы к пенициллину. В 1950 г. их число возросло до 50, в 1965 г. -- до 80, а в 1975 г. -- до 95%. Можно считать, что на стафилококки пенициллин больше не действует.

Интересно, что не все препараты сдают свои позиции одинаково быстро. Медленно теряют активность тетрациклины и левомицетин, а вот устойчивость микробов к стрептомицину, к сожалению, развивается очень быстро. Уступая просьбам фтизиатров (специалистов по лечению туберкулеза), врачи прочих специальностей почти совсем прекратили его применение, чтобы он не утратил своего действия полностью. Так же быстро теряет эффективность эритромицин. В результате к пенициллину теперь не чувствительно приблизительно 75% штаммов, к левомицетину -- 50%, к тетрациклину -- 40%. Отличаются по способности приобретать устойчивость и микробы. Наиболее быстро привыкают к антибиотикам микробы, вызывающие заболевания желудочно-кишечного тракта, наиболее медленно -- пневмококки (легочные кокки).

В 1977 г. группа канадских специалистов проанализировала использование антибиотиков в больнице города Гамильтона. Оказалось, что хирурги применяли антибиотики неправильно в 42%, а терапевты -- в 12% случаев. Случаи неправильного применения антибиотиков отмечались, во-первых, при назначении их с профилактическими целями. За исключением особых ситуаций, которые можно пересчитать по пальцам, такое назначение не приводит к успеху. Второе место занимают случаи назначения антибиотиков в недостаточных дозах или реже, чем это нужно для поддержания высокой концентрации в крови. На третьем месте стоит использование антибиотиков для местного лечения. Как теперь точно установлено именно при таком способе применения устойчивость микробов развивается особенно быстро. Существует много других лекарств (йодинол, раствор перекиси водорода, фурацилин, препараты ртути и серебра, краски), которые следует использовать для местного лечения.

Чтобы повысить эффективность лечения и предупредить развитие чувствительности в большинстве стран, как и в нашей стране, продажа антибиотиков без рецепта врача запрещена. Понятно почему? Если уж врачи иногда могут использовать их неправильно, то несведущие в медицине люди и подавно. Все антибиотики разделены на две подгруппы: основные -- пенициллин, левомицетин, тетрациклины, эритромицин, неомицин и резервные -- все остальные. Основными антибиотиками начинают лечить сразу, до того как будет установлена чувствительность микробов. Резервные антибиотики применяются только по особым показаниям, когда эффект основных антибиотиков уже полностью исчерпан. Наиболее часто применяют комбинацию тетрациклина с олеандомицином -- препарат олететрин. Тут сразу в одной таблетке содержатся оба антибиотика в наиболее выгодной пропорции.

При сочетании двух антибиотиков требуется максимум осторожности и делать это можно только по назначению врача. В некоторых случаях сочетание двух препаратов может не усилить, а ослабить действие каждого из них. Примером такого неудачного сочетания может служить смесь из пенициллина с левомицетином или тетрациклином. В некоторых случаях комбинация антибиотиков между собой или с другими препаратами может повести к резкому усилению побочного эффекта и отравлению. Совместное применение левомицетина и сульфаниламидных препаратов приводит к подавлению кроветворения. Одновременное применение стрептомицина с неомицином может привести к глухоте. Антибиотики -- лучший пример для иллюстрации того, что одно и то же лекарство может быть спасением для одного и ядом для другого.

Еще в то время, когда пенициллин продолжал свое триумфальное шествие по миру, ученые начали искать ему достойную смену. Вскоре после войны в лаборатории Флори был изучен новый гриб Цефалоспорум, который был выловлен в одной из сточных труб острова Сардинии. Оказалось, что гриб вырабатывает не один, а сразу семь антибиотиков. Один из них под названием цефалоспорин «С» стал использоваться в клинике вместо пенициллина. Основное его достоинство заключалось в том, что он был еще менее ядовит (если так можно выразиться), чем пенициллин, действовал на тех же микробов, но его можно было назначать больным, обладающим к пенициллину повышенной чувствительностью. Поскольку цефалоспорин очень похож на пенициллин, условно можно назвать его «внуком» первого антибиотика.

Вслед за «внуком» появились и «правнуки». Ученые разложили цефалоспорин на составные части и из них уже синтетическим путем получили новые препараты -- полусинтетические цефалоспорины. В нашей стране популярен антибиотик цепорин, который отличается очень высокой активностью и действует на утративших чувствительность к пенициллину стафилококков.

Заключение

С открытием пенициллина началась новая эра в лечении больных. Современным врачам трудно понять, насколько бессильны были их предшественники в борьбе с некоторыми инфекциями. Им незнакомо отчаяние, овладевавшее докторами, когда они сталкивались с болезнями, смертельными в те времена, а теперь излечимыми. Некоторые из этих заболеваний даже перестали существовать. Пенициллин и все антибиотики, открытые после него, дают возможность хирургу производить такие операции, на которые раньше никто бы не решился. Средняя продолжительность жизни человека настолько возросла, что изменилась вся общественная структура. Только Эйнштейн - но в другой области - и еще Пастер оказали такое же, как Флеминг, влияние на современную историю человечества. Государственные деятели трудятся изо дня в день над устройством мира, но лишь люди науки своими открытиями создают условия для их деятельности.

Пенициллин в борьбе с инфекциями привел к ослаблению вирулентности микробов. Только отдельные штаммы их еще сопротивляются и усиливают свою вирулентность, основные же отряды повержены в прах. Многие болезни, как пневмония, менингит, стали более легкими в своем течении.

Заражение крови и гнойные воспаления брюшины (перитонит), от которых раньше наступала неминуемая смерть, перестали пугать врачей, вооруженных ампулами с пенициллином.

Отступили и другие смертельные враги человечества. Эпидемический менингит перестал страшить нас, так как пенициллин дает почти 100-процентное исцеление от него, а ведь раньше появление эпидемии этой болезни вызывало у родителей панический ужас. Они знали, что 90 процентов заболевших должны были быть принесены в жертву ненасытному молоху смерти.

Пенициллин излечивает не только смертельные болезни, но и многие тяжелые заболевания, которые еще недавно делали человека инвалидом.

Он с успехом применяется при скарлатине и дифтерии. Он в несколько дней вылечивает от гонореи, убивает спирохету сифилиса, без осечки помогает при всех воспалительных процессах, вызываемых кокками...

Сейчас уже официально признано, что средняя продолжительность жизни в цивилизованных странах резко повысилась благодаря пенициллину, победившему самые злые инфекции.

Средняя продолжительность жизни человека равнялась в Европе XVI века 21 году, XVII века - 26 годам, XVIII века - 34 годам, в Европе конца XIX века - 50 годам. А теперь в отдельных странах средняя продолжительность жизни человека достигает 60 лет (в нашей же стране, учитывая еще благоприятные социальные условия, - 67 лет).

Таковы заслуги А. Флеминга перед человечеством. Но они не исчерпываются этим. Получив пенициллин, Флеминг открыл новую эру в истории медицины - эру антибиотической терапии.

Открытие Флеминга - одно из самых удивительных в науке. Оно, на наш взгляд, по своей значимости и масштабу вполне отвечает нашему атомному веку, и есть нечто глубоко справедливое в том, что оно пришло вместе с развитием атомной физики. Медикам, следовательно, тоже есть чем гордиться.

Литература

Прозоровский В.Б. «Рассказы о лекарствах» - М.: Медицина, 1986.

Моруа А. «Жизнь А. Флеминга». - М. Молодая гвардия. «ЖЗЛ» - 1964.

Семенов-Спасский Л.Г. «Вечный бой». - Л.: Детская литература, 1989

Размещено на Allbest.ru

...

Подобные документы

    Открытие одного из первых антибиотиков - пенициллина, спасшего не один десяток жизней. Оценка состояния медицины до пенициллина. Плесень как микроскопический грибок. Очистка и массовое производство пенициллина. Показания для применения пенициллина.

    презентация , добавлен 25.03.2015

    Значение открытий Флеминга, краткие биографические сведения об ученом, его путь к открытиям в медицине. Открытие лизоцима, его перспективы использования в медицинской практике. Получение Нобелевской премии по физиологии и медицине за открытие пенициллина.

    презентация , добавлен 16.04.2010

    Источники получения антибиотиков, их классификация по направленности и механизму фармакологического действия. Причины резистентности к антибиотикам, принципы рациональной антибиотикотерапии. Бактерицидные свойства пенициллина, его побочные эффекты.

    презентация , добавлен 16.11.2011

    Общая характеристика антибиотиков и особенности их получения. Схема производства пенициллина. Использование рДНК-биотехнологии. Применение антибиотиков в пищевой промышленности и сельском хозяйстве. Классификация антибиотиков по штаммам-продуцентам.

    презентация , добавлен 04.12.2015

    Разработка и производство антибиотиков, хронология изобретений. История открытия пенициллина и его целебного воздействия при различных инфекционных болезнях. Бактериостатические и бактерицидные антибиотики, их свойства и применение; побочные действия.

    презентация , добавлен 18.12.2016

    Понятие и назначение, физические и химические свойства пенициллина, история его открытия и значение в лечении разнообразных заболеваний. Характер воздействия пенициллина на микроорганизмы. Синтетические аналоги данного лекарства, их использование.

    презентация , добавлен 07.11.2016

    Применение антибиотиков в медицине. Оценка качества, хранение и отпуск лекарственных форм. Химические строение и физико-химические свойства пенициллина, тетрациклина и стрептомицина. Основы фармацевтического анализа. Методы количественного определения.

    курсовая работа , добавлен 24.05.2014

    Общая характеристика антимикробных препаратов. Классификация химиотерапевтических средств. Открытие пенициллина в 1928г. Механизмы развития антибиотикорезистентности. Механизм действия антибиотиков. Характеристика и применение антибактериальных средств.

    презентация , добавлен 23.01.2012

    История открытия пенициллина. Классификация антибиотиков, их фармакологические, химиотерапевтические свойства. Технологический процесс получения антибиотиков. Устойчивость бактерий к антибиотикам. Механизм действия левомицетина, макролидов, тетрациклинов.

    реферат , добавлен 24.04.2013

    Характеристика положительных и негативных свойств антибиотиков. Обобщение основных осложнений, вызванных приемом антибиотиков и объединенных одним названием "лекарственная болезнь": аллергические реакции, токсические явления, дисбактериозы, суперинфекция.

Историю создания антибактериальных препаратов нельзя назвать длительной — официально лекарство, которое мы теперь называем антибиотиком, было разработано англичанином Александром Флемингом в начале XX столетия. Но мало кто знает, что аналогичное изобретение на 70 лет раньше было сделано в России. Почему оно не стало применяться, и кто в итоге добился признания в этой сфере, рассказывает АиФ.ru.

Когда бактерии лечат

Первым, кто предположил существование бактерий, способных избавить человечество от тяжелых болезней, был французский микробиолог и химик Луи Пастер . Он выдвинул гипотезу о своего рода иерархии у живых микроорганизмов — и о том, что одни могут быть сильнее других. В течение 40 лет ученый искал варианты спасения от тех недугов, что долгие годы считались неизлечимыми, и ставил опыты на известных ему видах микробов: выращивал, очищал, подселял друг к другу. Именно так он обнаружил, что бактерии опаснейшей сибирской язвы могли погибать под воздействием других микробов. Однако дальше этого наблюдения Пастер не продвинулся. Самое обидное, что он даже не подозревал, насколько был близок к разгадке. Ведь «защитником» человека оказалась такая привычная и знакомая многим... плесень.

Именно этот грибок, вызывающий сегодня у многих сложные эстетические чувства, стал предметом дискуссии двух русских врачей в 1860-х годах. Алексей Полотебнов и Вячеслав Манассеин спорили — является ли зеленая плесень своего рода «прародителем» для всех грибковых образований или нет? Алексей выступал за первый вариант, более того, был уверен, что от нее произошли все микроорганизмы на земле. Вячеслав же утверждал, что это не так.

От жарких словесных дебатов медики перешли к эмпирическим проверкам и начали параллельно два исследования. Манассеин, наблюдая за микроорганизмами и анализируя их рост и развитие, обнаружил, что там, где разрастается плесень... других бактерий нет. Полотебнов, проводя свои независимые испытания, выявил то же самое. Единственное — он выращивал плесень в водной среде — и по окончании эксперимента обнаружил, что вода не пожелтела, осталась чистой.

Ученый признал поражение в споре и... выдвинул новую гипотезу. Он решил попробовать приготовить на основе плесени бактерицидный препарат — специальную эмульсию. Полотебнов начал применять этот раствор для лечения больных — в основном для обработки ран. Результат был ошеломляющим: пациенты шли на поправку гораздо быстрее, чем раньше.

Свое открытие, а также все научные выкладки, Полотебнов не оставил в тайне — опубликовал и представил на суд общественности. Но эти поистине революционные опыты остались незамеченными — официальная наука отреагировала вяло.

О пользе открытых форточек

Стоило бы Алексею Полотебнову быть более настойчивым, а официальным медиками немного менее инертными — и Россия была бы признана родиной изобретения антибиотиков. Но в итоге развитие новой методики лечения приостановилось на 70 лет, пока за дело не взялся британец Александр Флеминг. Ученый с самой юности хотел найти средство, которое позволяло бы уничтожать болезнетворные бактерии и спасать людям жизнь. Но главное открытие своей жизни он сделал случайно.

Флеминг занимался изучением стафилококков, при этом у биолога была одна отличительная особенность — он не любил наводить порядок на рабочем столе. Чистые и грязные банки могли вперемешку стоять неделями, при этом он забывал закрывать часть из них.

Однажды ученый оставил пробирки с остатками колоний выращенных стафилококков на несколько дней без внимания. Когда же он вернулся к стеклам, то увидел, что они все заросли плесенью — скорее всего, споры залетели через открытое окно. Флеминг не стал выбрасывать испорченные образцы, а с любопытством истинного ученого поместил их под микроскоп — и был поражен. Никакого стафилококка не было, осталась лишь плесень и капли прозрачной жидкости.

Флеминг стал экспериментировать с разными видами плесени, выращивая из обычной зеленой серую и черную и «подсаживая» ее к другим бактериям — результат был удивительным. Она словно «отгораживала» от себя вредоносных соседей и не позволяла им размножаться.

Он первым обратил внимание и на «влагу», которая возникает рядом с грибковой колонией, и предположил, что жидкость должна обладать буквально «убийственной силой». В результате долгих исследований ученый выяснил, что эта субстанция может уничтожать бактерии, более того, своих свойств она не теряет даже при разведении водой в 20 раз!

Найденное вещество он назвал пенициллином (от названия плесени Penicillium — лат.).

С этого времени разработка и синтез антибиотика стали основным делом жизни биолога. Его интересовало буквально все: на какой день роста, в какой среде, какой температуре грибок работает лучше всего. В результате испытаний выяснилось, что плесень, являясь крайне опасной для микроорганизмов, безвредна для животных. Первым человеком, на котором испытали действие вещества, стал ассистент Флеминга — Стюарт Греддок , который страдал от гайморита. В качестве эксперимента ему ввели в нос порцию вытяжки из плесени, после чего состояние больного улучшилось.

Результаты своих исследований Флеминг представил в 1929 году в Лондонском медицинско-научном клубе. Удивительно но, несмотря на страшные пандемии — только за 10 лет до этого «испанка» унесла жизни миллионов человек, — официальная медицина не сильно заинтересовалась открытием. Хотя Флеминг не обладал красноречием и, по отзывам современников, был «тихий, застенчивый человек» — он все же взялся за рекламу препарата в научном мире. Ученый регулярно, в течение нескольких лет печатал статьи и делал доклады, в которых упоминал о своих опытах. И в итоге, благодаря этой настойчивости коллеги-медики все же обратили внимание на новое средство.

Четыре поколения

Медицинская общественность наконец заметила препарат, но возникла новая проблема — при выделении пенициллин быстро разрушался. И только через 10 лет после обнародования открытия на помощь Флемингу пришли английские ученые Говард Флери и Эрнст Чейн . Именно они и придумали способ, как можно выделить пенициллин, чтобы тот сохранился.

Первые открытые испытания нового препарата на пациентах состоялись в 1942 году.

33-летняя молодая жена администратора Йельского университета Анна Миллер , мать троих детей, заразилась от 4-летнего сына стрептококковой ангиной и слегла. Болезнь быстро осложнилась лихорадкой, начал развивать менингит. Анна умирала, на момент доставки в главный госпиталь Нью-Джерси ей ставили диагноз стрептококковый сепсис, что в те годы было практически приговором. Сразу по прибытии Анне сделали первый укол пенициллина, и через несколько часов — еще серию инъекций. Уже за сутки температура стабилизировалась, через несколько недель лечения женщину выписали домой.

Ученых ждала заслуженная награда — в 1945 году Флемингу, Флори и Чейну за их работу была присуждена Нобелевская премия.

Долгое время пенициллин был единственным препаратом, который спасал жизни людей при тяжелых инфекциях. Однако периодически он вызывал аллергию, не всегда был доступен. И врачи стремились разработать более современные и недорогие аналоги.

Ученые и медики выяснили, что все антибактериальные вещества можно разделить на 2 группы: бактериостатические, когда микробы остаются живы, но не могут размножаться, и бактерицидные, когда бактерии погибают и выводятся из организма. После длительного применения ученые отметили, что микробы начинают адаптироваться и привыкать к антибиотикам, и поэтому приходится менять состав препаратов. Так появились более «сильные» и качественно очищенные препараты второго и третьего поколения.

Как и пенициллин, их применяют и в настоящее время. Но при тяжелых заболеваниях уже используются высокоэффективные антибиотики 4-го поколения, большая часть из которых синтезирована искусственно. В современные лекарства добавляют компоненты, которые помогают уменьшить риск возникновения осложнений: противогрибковые, противоаллергические и так далее.

Антибиотики помогли победить страшную «моровую язву» — чуму, наводившую ужас на все страны, черную оспу, снизили смертность от пневмонии, дифтерита, менингита, сепсиса, полиомиелита. Удивительно, а ведь все началось с научных споров и пары нечищенных пробирок.

Всемирно известный изобретатель антибиотиков – шотландский ученый Александр Флеминг, которому приписывают открытие пенициллинов из плесневых грибов. Это был новый поворот в развитии медицины. За такое грандиозное открытие изобретатель пенициллина получил даже Нобелевскую премию. Ученый достиг истины исследовательским путем, спас от смерти ни одно поколение людей. Гениальное изобретение антибиотиков позволило истреблять патогенную флору организма без серьезных последствий для здоровья.

Что такое антибиотики

С момента появления первого антибиотика прошло уже много десятилетий, но об этом открытии хорошо знают медицинские работники во всем мире, простые обыватели. Сами по себе антибиотики – это отдельная фармакологическая группы с синтетическими компонентами, цель которых – нарушить целостность мембран патогенных возбудителей, прекратить их дальнейшую активность, незаметно вывести из организма, предотвратить общую интоксикацию. Первые антибиотики и антисептики появились в 40-х годах прошлого века, с того времени их ассортимент значительно пополнился.

Полезные свойства плесени

От повышенной активности болезнетворных бактерий хорошо помогают антибиотики, которые были выработаны из плесневых грибов. Лечебное действие антибактериальных препаратов в организме системное, все это благодаря полезным свойствам плесени. Первооткрывателю Флемингу лабораторным методом удалось выделить пенициллин, польза такого уникального состава представлена ниже:

  • зеленая плесень подавляет бактерии устойчивые к другим лекарственным средствам;
  • польза плесневого грибка очевидна при лечении брюшного тифа;
  • плесень истребляет такие болезненные бактерии, как стафилококки, стрептококки.

Медицина до изобретения пенициллина

В средние века человечество знало о колоссальной пользе плесневого хлеба и отдельного вида грибов. Такие лекарственные компоненты активно использовали для обеззараживания гнойных ран участников боевых действий, исключения заражения крови после оперативного вмешательства. До научного открытия антибиотиков было еще много времени, поэтому положительный аспект пенициллинов медики черпали из окружающей природы, определили путем многочисленных экспериментов. Проверяли эффективность новых средств на раненых бойцах, женщинах в состоянии родильной горячки.

Как лечили инфекционные заболевания

Не зная мир антибиотиков, люди жили по принципу: «Выживает только сильнейший», по принципу естественного отбора. Женщины умирали от сепсиса при родах, а бойцы – от заражения крови и нагноения открытых ран. Найти средство для эффективного очищения ран и исключения инфицирования в то время не могли, поэтому чаще знахари и врачеватели пользовались местными антисептиками. Позже, в 1867 году хирург из Великобритании определил инфекционные причины появления нагноения и пользу карболовой кислоты. Тогда это было основное лечение гнойных ран, без участия антибиотиков.

Кто изобрел пенициллин

На главный вопрос, кто открыл пенициллин, имеется несколько противоречивых ответов, однако официально считается, что создатель пенициллина – шотландский профессор Александр Флеминг. С детства будущий изобретатель мечтал найти уникально лекарство, поэтому поступил в медицинскую школу на базе госпиталя Святой Марии, которую окончил в 1901 году. Колоссальную роль при открытии пенициллина сыграл Алмрот Райт, изобретатель вакцины против брюшного тифа. С ним Флемингу посчастливилось посотрудничать в 1902 году.

Учился молодой микробиолог в академии Килмарнок, затем переехал в Лондон. Уже в статусе дипломированного ученого Флемминг открыл существование penicillium notatum. Научное открытие было запатентовано, ученый после окончания Второй Мировой войны в 1945 году даже получил Нобелевскую премию. До этого работа Флеминга была не раз отмечена премиями и ценными наградами. Принимать антибиотики в целях эксперимента человек начал в 1932 году, а до этого исследования проводились преимущественно на лабораторных мышах.

Разработки европейских ученых

Основателем бактериологии и иммунологии является французский микробиолог Луи Пастер, который в девятнадцатом веке подробно описал пагубное воздействие почвенных бактерий на возбудителей туберкулеза. Всемирно известный ученый лабораторными методами доказал, что одни микроорганизмы – бактерии могут быть истреблены другими – плесневыми грибами. Начало научных открытий было положено, перспективы открывались грандиозные.

Известный итальянец Бартоломео Гозио в 1896 году в своей лаборатории изобрел микофеноловую кислоту, которую стали называть одним из первых антибиотических средств. Тремя годами позднее немецкие врачи Эммерих и Лов открыли пиоценазу – синтетическое вещество, способное снижать патогенную активность возбудителей дифтерии, тифа и холеры, демонстрировать устойчивую химическую реакцию против жизнедеятельности микробов в питательной среде. Поэтому споры в науке на тему, кто изобрел антибиотики, не стихают и в настоящее время.

Кто изобрел пенициллин в России

Два российских профессора – Полотебнов и Манассеин спорили на тему происхождения плесни. Первый профессор утверждал, что от плесени пошли все микробы, а второй был категорически против. Манассеин стал исследовать зеленую плесень и обнаружил, что вблизи ее локализации полностью отсутствуют колонии патогенной флоры. Второй ученый занялся изучением антибактериальных свойств такого натурального состава. Такая нелепая случайность в перспективе станет истинным спасением для всего человечества.

Русский ученый Иван Мечников изучил действие ацидофильных бактерий с кисломолочными продуктами, которые благотворно воздействуют на системное пищеварение. Зинаида Ермольева вообще стояла у истоков микробиологии, стала основательницей известного антисептика лизоцима, а в истории известна, как «Госпожа пенициллин». Свои открытия Флеминг реализовал в Англии, параллельно над разработкой пенициллина трудились отечественные ученые. Американские ученые тоже не сидели зря.

Изобретатель пенициллина в США

Американский исследователь Зельман Ваксман параллельно занимался разработкой антибиотиков, но на территории США. В 1943 году ему удалось получить эффективный в отношении туберкулеза и чумы синтетический компонент широкого спектра действия под названием стрептомицин. в дальнейшем было налажено его промышленное производство, чтобы с практической позиции уничтожить вредную бактериальную флору.

Хронология открытий

Создание антибиотиков было постепенным, при этом использовался колоссальный опыт поколений, доказанные общенаучные факты. Чтобы антибактериальная терапия в современной медицине получилась настолько успешной, многие ученые «приложили к этому руку». Изобретателем антибиотиков официально считается Александр Флеминг, но помощь пациентам оказали и другие легендарные личности. Вот что необходимо знать:

  • 1896 г - Б. Гозио создал микофеноловую кислоту против сибирской язвы;
  • 1899 г - Р. Эммерих и О. Лоу открыли местный антисептик на основе пиоценазы;
  • 1928 г - А. Флеминг открыл антибиотик;
  • 1939 г - Д. Герхард получил Нобелевскую премию по физиологии и медицине за антибактериальное действие пронтозила;
  • 1939 г - Н. А. Красильников и А. И. Кореняко стали изобретателями антибиотика мицетин, Р. Дюбо открыл тиротрицин;
  • 1940 г - Э. Б. Чейн и Г. Флори доказали существование стабильного экстракта пенициллина;
  • 1942 г - З. Ваксман предложил создание медицинского термин «антибиотик».

История открытия антибиотиков

Стать медиком изобретатель решил по примеру своего старшего брата Томаса, который в Англии получил диплом и работал врачом-офтальмологом. В его жизни случилось много интересных и судьбоносных событий, которые позволили ему сделать это грандиозное открытие, предоставили возможность продуктивно уничтожать патогенную флору, обеспечить гибель целых колоний бактерий.

Исследования Александра Флеминга

Открытию европейских ученых предшествовала необычная история, произошедшая в 1922 году. Простудившись, изобретатель антибиотиков не надел при работе маску и случайно чихнул в чашку Петри. Через некоторое время неожиданно обнаружил, что в месте попадания слюны вредные микробы погибли. Это был существенный шаг в борьбе с болезнетворной инфекций, возможность вылечить опасную болезнь. Результату такого лабораторного исследования был посвящен научный труд.

Следующее судьбоносное совпадение в трудовой деятельности изобретателя произошло шестью годами позднее, когда в 1928 году ученый уехал на месяц отдыхать с семьей, предварительно сделав посевы стафилококка в питательной среде из агар-агара. По возвращению обнаружил, что плесень отгородилась от стафилококков прозрачной жидкостью, нежизнеспособной для бактерий.

Получение активного действующего вещества и клинические исследования

Учитывая опыт и достижения изобретателя антибиотиков, ученые микробиологии Говард Флори и Эрнст Чейн в Оксфорде решили пойти дальше и занялись получением пригодного к массовому использованию препарата. Лабораторные исследования проводились на протяжении 2 лет, в результате чего было определено чистое действующее вещество. Испытывал его в обществе ученых сам изобретатель антибиотиков.

При помощи такой инновации Флори и Чейн вылечили несколько осложненных случаев прогрессирующего сепсиса и пневмонии. В дальнейшем разработанные в лабораторных условиях пенициллины начали успешно лечить такие страшные диагнозы, как остеомиелит, газовая гангрена, родильная горячка, стафилококковая септицемия, сифилис, сифилис, другие инвазивные инфекции.

В каком году изобрели пенициллин

Официальная дата общенародного признания антибиотика – 1928 год. Однако такого рода синтетические вещества были выявлены и раньше – на внутреннем уровне. Изобретатель антибиотиков – Александр Флеминг, но за это почетное звание могли посоперничать европейские, отечественные ученые. Шотландцу удалось прославить свое имя в истории, благодаря этому научному открытию.

Запуск в массовое производство

Поскольку открытие было официально признано в период Второй Мировой войны, очень сложно было наладить производство. Однако все понимали, что с его участием можно спасти миллионы жизней. Поэтому в 1943 году в условиях боевых действий серийным выпуском антибиотических средств занялась ведущая американская компания. Таким способом удалось не только сократить показатели смертности, но и увеличить продолжительность жизни мирного населения.

Применение в годы второй мировой войны

Такое научное открытие было особенно уместно в период боевых действий, поскольку люди тысячами умирали от гнойных ран и масштабного заражения крови. Это были первые эксперименты на людях, которые давали устойчивый терапевтический эффект. После окончания войны производство таких антибиотиков не просто продолжилось, но и в разы повысилось по объемам.

Значение изобретения антибиотиков

Современное общество по сей день должно быть благодарно, что ученые своего времени сумели придумать эффективные против инфекций антибиотики и воплотили свои разработки в жизнь. Таким фармакологическим назначением могут смело воспользоваться взрослые и дети, вылечить ряд опасных заболеваний, избежать потенциальных осложнений, летального исхода. Изобретатель антибиотиков не забыт в нынешнее время.

Положительные моменты

Благодаря антибиотическим средствам, смерть от пневмонии и родовой горячки стала редкостью. Кроме того, наблюдается положительная динамика при таких опасных заболеваниях, как брюшной тиф, туберкулез. С помощью уже современных антибиотиков можно истребить патогенную флору организма, вылечить опасные диагнозы еще на ранней стадии инфицирования, исключить глобальное заражение крови. Заметно снизился и показатель детском смертности, женщины при родах умирают гораздо реже, чем в средние века.

Отрицательные аспекты

Изобретатель антибиотиков тогда не знал, что со временем патогенные микроорганизмы адаптируются в антибиотической среде и перестанут погибать под воздействием пенициллина. Кроме того, не существует лекарство от всех возбудителей, изобретатель такой разработки еще не появился, хотя современные ученые к этому стремятся годами, десятилетиями.

Генные мутации и проблема резистентности бактерий

Патогенные микроорганизмы по своей природе оказались так называемыми «изобретателями», поскольку под воздействием антибиотических препаратов широкого спектра действия способны постепенно мутировать, приобретая повышенную устойчивость к синтетическим веществам. Вопрос резистентности бактерий для современной фармакологии стоит особенно остро.

Видео

Внимание! Иформация представленная в статье носит ознакомительный характер. Материалы статьи не призывают к самостоятельному лечению. Только квалифицированный врач может поставить диагноз и дать рекомендации по лечению исходя из индивидуальных особенностей конкретного пациента.

Нашли в тексте ошибку? Выделите её, нажмите Ctrl + Enter и мы всё исправим!
Александра Флеминга считают изобретателем первого из антибиотиков - пенициллина. При этом ни он сам, ни другие люди, так или иначе участвовавшие в создании антибиотиков, не претендуют на авторство, искренне считая, что открытие, спасающее жизни, не может быть источником дохода.

Мы привыкли ко многим вещам, изобретение которых когда-то потрясло мир и перевернуло быт. Мы не удивляемся стиральным машинам, компьютерам, настольным лампам. Нам даже трудно представить, как жили люди без электричества, освещая дома керосиновыми лампами или лучинами. Предметы окружают нас, и мы привыкли не замечать их ценности.

Наш сегодняшний рассказ посвящен не предметам быта. Это рассказ о средствах, к которым мы тоже привыкли и уже не ценим того, что они спасают самое ценное — жизнь. Нам кажется, что антибиотики существовали всегда, но это не так: еще во время Первой мировой войны солдаты умирали тысячами, потому что мир не знал пенициллина, и врачи не могли сделать спасительные уколы.

Воспаление легких, сепсис, дизентерия, туберкулез, тиф — все эти болезни считались либо неизлечимыми, либо почти неизлечимыми. В 30-ых годах ХХ (двадцатого!) века больные очень часто умирали от послеоперационных осложнений, главными из которых было воспаление ран и дальнейшее заражение крови. И это при том, что мысль об антибиотиках была высказана еще в XIX веке Луи Пастером (1822-1895).

Этот французский микробиолог открыл, что бактерии сибирской язвы погибают под действием некоторых других микробов. Однако его открытие не дало готового ответа или рецепта, скорее, поставило перед учеными множество новых вопросов: какие микробы «воюют», чем один побеждает другого... Конечно, чтобы выяснить это, пришлось бы проделать огромную работу. Видимо, такой пласт работы был неподъемным для ученых того времени. Однако ответ был совсем близко, с самого начала жизни на Земле...

Плесень. Такая знакомая и привычная плесень, тысячи лет живущая рядом с человеком, оказалась его защитником. Этот грибок, витающий в воздухе в виде спор, стал предметом спора между двумя русскими врачами в 1860-ых годах.

Незамеченное открытие

Алексей Полотебнов и Вячеслав Манассеин не сошлись во взглядах на природу плесени. Полотебнов считал, что от плесени пошли все микробы, то есть плесень есть прародитель микроорганизмов. Манассеин возражал ему. С целью доказать свою правоту последний начал исследование зеленой плесени (по-латыни penicillium glaucum). Спустя какое-то время врач имел счастье наблюдать интересный эффект: там, где был плесневой грибок, не было бактерий. Вывод следовал только один: каким-то образом плесень не позволяет развиваться микроорганизмам. Оппонент Манассеина Полотебнов тоже пришел к такому выводу: по его наблюдениям, жидкость, в которой образовывалась плесень, оставалась чистой, прозрачной, что свидетельствовало только об одном — бактерий в ней нет.

К чести проигравшего в научном споре Полотебнова, он продолжил свое исследование уже в новом русле, использовав плесень в качестве бактерицидного средства. Он создал эмульсию с плесневым грибком и спрыскивал ею язвы больных кожными заболеваниями. Результат: обработанные язвы заживали раньше, чем если бы остались без лечения. Конечно, как врач Полотебнов не мог оставить открытие втайне и рекомендовал такой способ лечения в 1872 году в одной из своих статей. К сожалению, его наблюдения наука обошла вниманием, и врачи всего мира продолжали лечить больных средствами времен мракобесия: кровопусканием, порошками из высушенных животных и насекомых и прочей бессмыслицей. Эти «средства» считались лечебными и использовались даже в начале прогрессивного ХХ века, когда братья Райт испытывали свои первые самолеты, а Эйнштейн работал над теорией относительности.

Убрать на столе - похоронить открытие

Статья Полотебнова осталась без внимания, и целых полвека никто из ученых не предпринимал новых попыток изучения плесневого грибка. Исследования Полотебнова и их результаты «воскресли» уже в начале ХХ века благодаря счастливой случайности и микробиологу, который не любил убирать на своем столе…

Шотландец Александр Флеминг, которого считают создателем пенициллина, с самой юности мечтал найти средство, уничтожающее болезнетворные бактерии. Он упорно занимался микробиологией (в частности - изучал стафилококки) в своей лаборатории, которая располагалась в одном из госпиталей Лондона и представляла собой тесную комнатушку. Помимо упорства и самоотверженности в работе, не раз отмеченные его коллегами, Флеминг обладал еще одним качеством: он не любил наводить порядок на своем столе. Склянки с препаратами иногда стояли на столе микробиолога неделями. Благодаря этой своей привычке Флемингу и удалось буквально наткнуться на великое открытие.

Однажды ученый оставил колонию стафилококков без внимания на несколько дней. А когда решил их убрать, то обнаружил, что препараты покрылись плесенью, споры которой, по-видимому, проникли в лабораторию через открытое окно. Флеминг не только не выбросил испортившийся материал, но и изучил его под микроскопом. Ученый был поражен: от болезнетворных бактерий не осталось и следа - только плесень и капли прозрачной жидкости. Флеминг решил проверить, действительно ли плесень способна убивать опасные микроорганизмы.

Микробиолог вырастил грибок в питательной среде, «подселил» к нему другие бактерии и поместил чашку с препаратами в термостат. Результат был поразительным: между плесенью и бактериями образовались пятна, светлые и прозрачные. Плесень «огораживала» себя от «соседей» и не давала им размножаться.

Что же это за жидкость, которая образуется возле плесени? Этот вопрос не давал покоя Флемингу. Ученый приступил к новому эксперименту: вырастил плесень в большой колбе и стал наблюдать за ее развитием. Цвет плесени менялся 3 раза: из белого в зеленый, а затем она стала черной. Питательный бульон тоже менялся - из прозрачного он стал желтым. Вывод напрашивался сам собой: плесень выделяет в окружающую среду какие-то вещества. Осталось проверить, обладают ли они столь же «убийственной» силой.

Эврика!

Жидкость, в которой жила плесень, оказалась еще более мощным средством массового поражения бактерий. Даже разведенная водой в 20 раз, она не оставляла бактериям никакого шанса. Флеминг забросил свои прошлые исследования, посвятив все мысли только этому открытию. Он выяснял, на какой день роста, на какой питательной среде, при какой температуре грибок проявляет наибольшее антибактериальное воздействие. Он выяснил, что жидкость, выделенная грибком, воздействует только на бактерии и безвредна для животных. Он назвал эту жидкость пенициллином.

В 1929 году Флеминг рассказал о найденном лекарстве в Лондонском медицинском научно-исследовательском клубе. Его сообщение осталось без внимания - так же, как когда-то статья Полотебнова. Однако шотландец оказался более упрямым, чем русский врач. На всех конференциях, выступлениях, собраниях врачей Флеминг так или иначе упоминал открытое им средство для борьбы с бактериями. Однако была еще одна проблема - нужно было как-то выделить чистый пенициллин из бульона, при этом не разрушив его.

Труды и награды

Выделить пенициллин - эта задача решалась не один год. Флеминг со товарищи предприняли не один десяток попыток, однако в чужой среде пенициллин разрушался. Врачи-микробиологи не могли решить эту задачу, здесь требовалась помощь химиков.

Информация от новом лекарстве постепенно достигла Америки. Спустя 10 лет после первого заявления Флеминга о пенициллине, этим открытием заинтересовались двое английских ученых, которых судьба и война забросила в Америку. В 1939 году Говард Флери, профессор патологии одного из оксфордских институтов, и Эрнст Чейн, биохимик, бежавший из Германии, искали тему для совместной работы. Их заинтересовал пенициллин, точнее, задача его выделения. Она и стала темой их работы.

В Оксфорде оказался штамм (культура микробов), который когда-то прислал Флеминг, поэтому у ученых был материал для работы. В результате долгих, трудных исследований и опытов Чейну удалось получить кристаллы калийной соли пенициллина, которые он затем превратил в слизистую массу, а потом - в коричневый порошок. Гранулы пенициллина были очень мощными: разведенные в пропорции один на миллион, они убивали бактерии через несколько минут, однако были безвредны для мышей. Опыты проводились на мышах: их заражали убойными дозами стрептококков и стафилококков, а затем спасали жизнь половине из них, вводя пенициллин. Опыты Чейна привлекли еще нескольких ученых. Было установлено, что пенициллин также убивает и возбудителей гангрены.

На человеке пенициллин был опробован в 1942 году и спас жизнь умирающему от менингита. Этот случай произвел большое впечатление на общество и врачей. В Англии наладить производство пенициллина не удалось из-за войны, поэтому в 1943 году производство открылось в Америке. В том же году американское правительство сделало заказ на 120 млн. единиц препарата. В 1945 году Флери и Чейн получили Нобелевскую премию за выдающееся открытие. Сам же Флеминг удостаивался различных званий и наград десятки раз: был удостоен рыцарского звания, 25 почетных степеней, 26 медалей, 18 премий, 13 наград и почетного членства в 89 академиях наук и научных обществах. На могиле ученого - скромная надпись: «Александр Флеминг - изобретатель пенициллина».

Изобретение, принадлежащее человечеству

Поисками средства для борьбы с бактериями ученые всего мира искали с тех самых пор, как узнали об их существовании и смогли разглядеть в микроскоп. С началом Второй мировой войны необходимость в этом средстве назрела как никогда. Неудивительно, что в Советском Союзе тоже работали над этим вопросом.

В 1942 году профессор Зинаида Ермольева получила пенициллин из плесени пенициллиум крустозум, взятой со стены одного из бомбоубежищ Москвы. В 1944 году Ермольева, после долгих наблюдений и исследований, решила испытать свой препарат на раненых. Ее пенициллин стал чудом для полевых врачей и спасительным шансом для многих раненых бойцов. В том же году в СССР было налажено производство пенициллина.

Антибиотики - это большая «семья» средств, а не только пенициллин. Некоторые из его «сородичей» были открыты в военные годы. Так, в 1942 году Гаузе получил грамицидин, а в 1944-ом - американец украинского происхождения Ваксман выделил стрептомицин.

Полотебнов, Флеминг, Чейн, Флери, Ермольева, Гаузе, Ваксман - эти люди своими трудами подарили человечеству эпоху антибиотиков. Эпоху, когда менингит или воспаление легких не становятся приговором. Пенициллин так и остался незапатентованным: никто из его создателей не претендовал на авторство средства, спасающего жизни.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Народной медицине давно были известны некоторые способы применения в качестве лечебных средств микроорганизмов или продуктов их обмена, однако причина их лечебного действия в то время оставалась неизвестной. Например, для лечения некоторых язв, кишечных расстройств и других заболеваний в народной медицине применялся заплесневевший хлеб.

В 1871 —1872 гг. появились работы русских исследователей В. А. Манассеина и А. Г. Полотебнова, в которых сообщалось о практическом использовании зеленой плесени для заживления кожных язв у человека. Первые сведения об антагонизме бактерий были обнародованы основоположником микробиологии Луи Пастером в 1877 г. Он обратил внимание на подавление развития возбудителя сибирской язвы некоторыми сапрофитными бактериями и высказал мысль о возможности практического использования этого явления.

С именем русского ученого И. И. Мечникова (1894) связано научно обоснованное практическое использование антагонизма между энтеробактериями, вызывающими кишечные расстройства, и молочнокислыми микроорганизмами, в частности болгарской палочкой («мечниковская простокваша»), для лечения кишечных заболеваний человека.

В 1896 году Р. Гозио из культурной жидкости Penicillium brevicompactum выделил кристаллическое соединение - микофеноловую кислоту, подавляющее рост бактерий сибирской язвы.

Эммирих и Лоу в 1899 году сообщили об антибиотическом веществе, образуемом Pseudomonas pyocyanea, они назвали его пиоцианазой; препарат использовался в качестве лечебного фактора как местный антисептик.

Русский врач Э. Гартье (1905) применил кисломолочные продукты, приготовленные на заквасках, содержащих ацидофильную палочку, для лечения кишечных расстройств.

Пауль Эрлих (1854-1915) в результате многочисленных опытов синтезировал в 1912 году мышьяковистый препарат - сальварсан, убивающий in vitro возбудителя сифилиса. В 30-х годах прошлого столетия в результате химического синтеза были получены новые органические соединения - сульфамиды, среди которых красный стрептоцид (пронтозил) был первым эффективным препаратом, оказавшим терапевтическое действие при тяжёлых стрептококковых инфекциях.

В 1910-1913 годах O. Black и U. Alsberg выделили из гриба рода Penicillium пеницилловую кислоту, обладающую антимикробными свойствами.

В 1929 году А. Флемингом был открыт новый препарат пенициллин, который только в 1940 году удалось выделить в кристаллическом виде.

В 1937 году в нашей стране был синтезирован сульфидин - соединение, близкое к пронтозилу. Открытие сульфамидных препаратов и применение их в медицинской практике составило известную эпоху в химиотерапии многих инфекционных заболеваний, в том числе сепсиса, менингита, пневмонии, рожистого воспаления, гонореи и некоторых других.

В 1939 г. Н. А. Красильников и А. И. Кореняко из культуры фиолетового актиномицета Actinomyces violaceus, выделенного ими из почвы, получили первый антибиотик актиномицетного происхождения — мицетин — и изучили условия биосинтеза и применения мицетина в клинике.

А. Флеминг, изучая стрептококков, выращивал их на питательной среде в чашках Петри. На одной из чашек вместе со стафилококками выросла колония плесневого гриба, вокруг которой стафилококки не развивались. Заинтересовавшись этим явлением, Флеминг выделил культуру гриба, определенную затем как Penicilliurn notatum. Выделить вещество, подавляющее рост стафилококков, удалось только в 1940 г. оксфордской группе исследователей. Полученный антибиотик был назван пенициллином.

С открытия пенициллина началась новая эра в лечении инфекционных болезней — эра применения антибиотиков. В короткий срок возникла и развилась новая отрасль промышленности, производящая антибиотики в крупных масштабах. Теперь вопросы микробного антагонизма приобрели важное практическое значение и работы по выявлению новых микроорганизмов — продуцентов антибиотиков стали носить целенаправленный характер.

В СССР получением пенициллина успешно занималась группа исследователей под руководством 3. В. Ермольевой. В 1942г. был выработан отечественный препарат пенициллина. Ваксманом и Вудрафом из культуры Actinomyces antibioticus был выделен антибиотик актиномицин, который впоследствии стал использоваться как противораковое средство. Первым антибиотиком актиномицетного происхождения, нашедшим широкое применение особенно при лечении туберкулеза, был стрептомицин, открытый в 1944 г. Ваксманом с сотрудниками. К противотуберкулезным антибиотикам относятся также открытые позже виомицин (флоримицин), циклосерин, канамицин, рифамицин.

В последующие годы интенсивные поиски новых соединений привели к открытию ряда других терапевтически ценных антибиотиков, нашедших широкое применение в медицине. К ним относятся препараты с широким спектром антимикробного действия. Они подавляют рост не только грамположительных бактерий, которые более чувствительны к действию антибиотиков (возбудители пневмонии, различных нагноений, сибирской язвы, столбняка, дифтерии, туберкулеза), но и грамотрицательных микроорганизмов, которые более устойчивы к действию антибиотиков (возбудители брюшного тифа, дизентерии, холеры, бруцеллеза, туляремии), а также риккетсий (возбудители сыпного тифа) и крупных вирусов (возбудители пситтакоза, лимфогрануломатоза, трахомы и др.). К таким антибиотикам относятся хлорамфеникол (левомицетин), хлортетрациклин (биомицин), окситетрациклин (террамицин), тетрациклин, неомицин (колимицин, мицерин), канамицин, паромомицин (мономицин) и др. Кроме того, в распоряжении врачей в настоящее время имеется группа антибиотиков резерва, активных в отношении устойчивых к пенициллину грамположительных болезнетворных микроорганизмов, а также противогрибные антибиотики (нистатин, гризеофульвин, амфотерицин В, леворин).

Термин «антибиотики», или «антибиотические вещества», предложенный в 1942 г. Ваксманом, первоначально обозначал химические соединения, образуемые микроорганизмами, которые обладают способностью подавлять рост и даже разрушать бактерии и другие микроорганизмы. Это определение, как оказалось впоследствии, не совсем точно, так как в число антибиотиков нужно было бы включить вещества микробного происхождения, которые оказывают не специфическое, а общее антисептическое или консервирующее действие на живые клетки. К таким веществам относятся, в частности, спирты, органические кислоты, перекиси, смолы и др. К тому же антибактериальное действие эти соединения оказывают только в относительно высоких концентрациях. К антибиотикам следует относить только такие вещества, которые в незначительных количествах проявляют специфическое (избирательное) действие на отдельные звенья обмена веществ микробной клетки. Позже в тканях высших растений и животных были найдены соединения, способные в малых количествах специфически подавлять рост микробов. Более того, было показано, что некоторые сходные антибиотики (например, цитринин) могут синтезироваться как микробами, так и высшими растениями. Таким образом, круг организмов-продуцентов антибиотических веществ расширился, что также должно было найти отражение в термине «антибиотики». Установление структуры молекул многих антибиотиков позволило осуществить химический синтез ряда этих соединений без участия организмов-продуцентов.

Дальнейший этап развития химии антибиотиков — изменение (трансформация) молекул этих соединений для получения производных, обладающих рядом преимуществ по сравнению с исходными препаратами. Такое направление исследований объясняется в основном двумя причинами: необходимостью снижения токсичности антибиотиков при сохранении их антибактериального действия; борьбой с инфекционными заболеваниями, вызываемыми устойчивыми к широко применявшимся антибиотикам формами патогенных микроорганизмов. Преимущества производных антибиотиков по сравнению с исходными проявляются также и в изменении растворимости, удлинении срока циркуляции в организме больного и т. д.

Получить производные антибиотиков можно с помощью как химического, так и биологического синтеза. Известен и комбинированный способ получения препаратов. В этом случае ядро молекулы антибиотика формируется при биосинтезе с помощью соответствующих микроорганизмов-продуцентов, а «достройка» молекулы осуществляется методом химического синтеза. Полученные этим способом антибиотики называются полусинтетическими. Так были получены и нашли широкое применение в клинике весьма эффективные полусинтетические пенициллины (метициллин, оксациллин, ампициллин, карбенициллин) и цефалоспорины (цефалотин, цефалоридин) с новыми по сравнению с природными антибиотиками ценными терапевтическими свойствами.

Все эти данные, накопленные в процессе становления и развития науки об антибиотиках, потребовали уточнения термина «антибиотики». В настоящее время антибиотиками следует называть химические соединения, образуемые различными микроорганизмами в процессе их жизнедеятельности, а также производные этих соединений, обладающие способностью в незначительных концентрациях избирательно подавлять рост микроорганизмов или вызывать их гибель. Вполне вероятно, что и эта формулировка с дальнейшим прогрессом антибиотической науки будет уточняться.

В первые годы после открытия антибиотиков их получали с использованием метода поверхностной ферментации. Этот метод заключался в том, что продуцент выращивали на поверхности питательной среды в плоских бутылях (матрацах). Чтобы получить сколько-нибудь заметные количества антибиотика, требовались тысячи матрацев, каждый из которых после слива культуралыюй жидкости необходимо было мыть, стерилизовать, заполнять свежей средой, засевать продуцентом и инкубировать в термостатах. Малопроизводительный способ поверхностной ферментации (поверхностного биосинтеза) не мог удовлетворить потребностей в антибиотиках. В связи с этим был разработан новый высокопроизводительный метод глубинного культивирования (глубинной ферментации) микроорганизмов — продуцентов антибиотиков. Это позволило в короткий срок создать и развить новую отрасль промышленности, выпускающую антибиотики в больших количествах.

Метод глубинного культивирования отличается от предыдущего тем, что микроорганизмы-продуценты выращивают не на поверхности питательной среды, а во всей ее толще. Выращивание продуцентов ведут в специальных чанах (ферментаторах), емкость которых может превышать 50 м3. Ферментаторы снабжены приспособлениями для продувания воздуха через питательную среду и мешалками. Развитие микроорганизмов-продуцентов в ферментаторах происходит при непрерывном перемешивании питательной среды и подаче кислорода (воздуха). При глубинном выращивании во много раз по сравнению с выращиванием продуцента на поверхности среды увеличивается накопление биомассы (из расчета на единицу объема питательной среды), а значит, и возрастает содержание антибиотика в каждом миллилитре культуральной жидкости, т. е. повышается ее антибиотическая активность.

Производственная схема биосинтеза любых антибиотиков включает следующие основные стадии: ферментацию, выделение антибиотика и его химическую очистку, сушку антибиотика и приготовление лекарственной формы. Для осуществления ферментации — биохимического процесса переработки сырья — необходимо иметь питательную среду (сырье) и микроорганизмы, перерабатывающие это сырье. Питательные среды подбирают с таким расчетом, чтобы они обеспечивали хороший рост и развитие продуцента и способствовали максимально возможному биосинтезу антибиотика.

Поднятию производительности антибиотической промышленности, помимо внедрения в практику глубинной ферментации, в огромной степени способствовало использование для биосинтеза новых высокопроизводительных штаммов-продуцентов. Для их получения были разработаны специальные методы селекции. Вследствие большой вариабельности микроорганизмов-продуцентов и быстрой утраты ими исходных свойств (особенно уровня антибиотической активности) необходимо было разработать методы хранения микроорганизмов-продуцентов и поддержания активности, а также способы приготовления посевного материала для засева огромных объемов питательной среды в ферментерах.

В 70-х годах ежегодно описывалось более 300 новых антибиотиков

В настоящее время число известных антибиотиков приближается к 3000, однако в клинической практике используется всего около 50.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: