Про заболевания ЖКТ

Изучение антигенов эритроцитов и анализ иммуногенных свойств показали их различную способность к сенсибилизации в процессе трансфузий или при беременности. Расположив частоту встречаемости антител к антигенам эритроцитов в убывающем порядке, получили шкалу иммуногенности антигенов эритроцитов, которую также можно назвать шкалой приоритета трансфузионно опасных эритроцитарных антигенов. В настоящее время шкала с учетом только основных клинически значимых антигенов систем AB 0, Резус и Келл выглядит следующим образом: А, В > D > K > c > C > E > e .

СИСТЕМА AB0

Система АВ0 состоит из двух основных компонентов - антигенов А и В, пред ставленных на эритроцитах как по одному, так и вместе - группы А (II), B (III ), AB (IV ); отсутствие антигенов на мембране эритроцитов обозначают символом «0» - группа 0 (I ). Уникальное свойство системы AB 0 - наличие в норме антител к отсутствующим антигенам. Эти антитела называют изогемагглютининами анти-А, анти-В (или устаревшее обозначение α иβ ). Сочетание антигенов А и В на эритроцитах и антител к ним в сыворотке крови человека определяет его принадлежность к четырем основным группам крови (табл. 18-1).

Таблица 18-1. Основные группы крови человека системы AB0

Группа крови

по системе AB 0

Антигены системы AB0

Антитела системы AB0

A (II)

B (III)

AB (IV)

Антигены А и В представляют собой неоднородные структуры, определяющие наличие большого количества вариантов антигенов системы AB 0. Так, структуру антигена А описывают более чем 30 вариантами: А 1 , А 2 , А 3 , А 4??.. А 27 , А х, А end и др. На эритроцитах могут быть представлены только некоторые из перечисленных вариантов антигена; при этом возможна выработка антител к отсутствующим частям антигенной мозаики. Наиболее иммуногенна часть А 1 ; при ее обнаружении на эритроцитах человека говорят о второй А(II) или четвертой АВ(IV) группе крови. Диагностика подгруппы А 2 возможна только при использовании специаль ного реагента - анти-А 1 . В случаях наличия антигена А без выявления варианта А 1 - обобщенный вариант А 2 , обозначается подгруппой А 2 (II) или А 2 В(IV) соот ветственно. Выявляемые антитела к отсутствующим частям антигена А(А 1) называют экстрагглютининами и обозначают как анти-А 1 или α 1 .

Антигены эритроцитов. На поверхности эритроцитов имеется более 100 антигенов, относящихся к 14 системам. Наиболее важными являются изогемагглютиногены системы АВО групп крови. По наличию А и В АГ и соответствующих им естественных антител (a- альфа, b- бетта) различают 4 группы у человека: 0 (I) – нет антигенов, есть a и b -антитела, А (II) – присутствуют только А антиген и b-антитела, В (III) – есть В антигены и a-антитела, АВ (IV) - есть оба антигена, нет антител.

Людям, имеющим антитела против антигенов А и В, нельзя переливать кровь тех, эритроциты которых несут соответствующие антигены. Так, реципиентам I группы крови (антитела альфа и бета) нельзя переливать эритроциты любой из остальных групп, так как наступит агглютинация и лизис этих эритроцитов.

У 85% людей на эритроцитах есть резус-АГ (Rh+), обнаруженный впервые у обезьян вида макака-резус. Такой антиген отсутствует у 15% людей. При наличии у резус-отрицательной женщины плода, на эритроцитах которого есть этот антиген (за счет генов отца), происходит иммунизация матери, и ее антитела могут разрушать эритроциты плода, особенно при повторной беременности.

Антигены лейкоцитов. На лейкоцитах (лимфоцитах) крови выявлена целая система лейкоцитарных АГ, она получила название HLA (Human Leycocyte Antigens), которая контролируется генами (главным комплексом гистосовместимости). HLA-антигены обусловливают несовместимость тканей при пересадках между индивидуумами. Наборы HLA-антигенов у каждого человека индивидуальны и только у однояйцовых близнецов они одинаковы. HLA участвует в распознавании антигенов и определяют предрасположенность к заболеваниям.

Гены, контролирующие синтез этих антигенов, локализованы в 6 хромосоме. Они занимают обширный генетический район и делятся на 5 классов. Важнейшее значение в иммунорегуляции имеют гены I и II классов гистосовместимости. Локусы генов I класса локализуются в периферическом плече хромосомы, II класса – ближе к центромере.

Молекулы HLA I класса являются гетеродимерами, так как состоят их двух различных цепей. Одна из них – тяжелая, с молекулярной массой 43 kDa, вторая – легкая, с молекулярной массой 11 kDa, нековалентно связанная с первой. Она представляет собой b2-микроглобулин. Тяжелая цепь имеет три домена (a1, a2, a3), выступающих на поверхности клетки, гидрофобный участок, фиксирующий цепь на мембране, и концевой участок в цитоплазме. HLA –АГ I класса имеется на всех ядросодержащих клетках: лимфоцитах, в меньшей степени – на клетках печени, легких, почек, очень редко на клетках мозга и скелетных мышц. Гены, контролирующие антигены I класса, представлены тремя локусами: HLA-A, HLA-B, HLA-C. В каждом локусе существует несколько аллелей, ответственных за синтез соответствующего антигена (эпитопа) и обозначаемых цифрами. Аллели локуса HLA-A кодируют синтез 21 антигенов, HLA-B - 25, HLA-C – 11 антигенов. С развитием иммуногенетики количество вновь открываемых аллелей постоянно увеличивается. Антигены I класса занимают примерно 1% клеточной поверхности. Они регулируют и ограничивают взаимодействие между Т-киллерами и клетками-мишенями. Отсюда их основная биологическая роль заключается в том, что АГ I класса являются маркерами «своего». Клетки, несущие эти АГ, не атакуются собственными Т-киллерами в связи с тем, что в эмбриогенезе аутореактивные Т-киллеры, распознающие антигены I класса на собственных структурах, уничтожаются или супрессируются.

Молекулы II класса системы HLA состоят из двух полипептидных цепей: a (молекулярная масса 34 kDa) и b (молекулярная масса 28 kDa). Обе цепи имеют по два домена (a1, a2 и b1, b2), закрепленные в клеточной мембране дополнительным участком. HLA-АГ II класса экспрессированы на В-лимфоцитах, макрофагах, активированных клетках после стимуляции их g-интерфероном. Гены, контролирующие антигены II класса, представлены тремя локусами: HLA-DR, HLA-DQ, HLA-DP. В локусе DR имеется 12 аллелей, в локусе DQ – 9, в локусе DP – 6 аллелей. HLA-АГ II класса участвуют в распознавании чужеродных антигенов, в межклеточных взаимодействиях В-лимфоцитов и макрофагов с Т-хелперами.

Антигены системы HLA наследуются по кодоминантному типу, т.е. экспрессируются оба антигена двух хромосом. У индивидуума может быть до 12 аллелей (по 2 из каждого локуса). Набор аллелей на хромосоме (гаплотип) наследуется целиком и существует только 4 возможных комбинации 2-х отцовских и 2-х материнских гаплотипов.

Определение HLA-антигенов необходимо в следующих ситуациях:

    при типировании тканей с целью подбора донора реципиенту. Наибольшее значение имеет совместимость по антигенам локуса HLA-DR;

    для установления связи экспрессии определенных антигенов и предрасположенности к тому или иному заболеванию. Наиболее сильная корреляция выявлена между наличием HLA-B27 и болезнью Бехтерева (анкилозирующий спондилоартрит): 95% больных имеют этот антиген.

    при оценке иммунного статуса, когда используется выявление активированных Т-клеток, несущих HLA-DR антигены, и определение HLA-DR экспрессирующих мононуклеаров, участвующих в распознавании антигенов.

ПРИОБРЕТЕННЫЙ ИММУНИТЕТ

Основные особенности адаптивного иммунитета, отличающие его от врожденного иммунитета:

1. адаптивный иммунитет узкоспецифичен, поскольку он направлен против индивидуальных чужеродных молекул - антигенов

2. в адаптивном иммунитете эффекторные клетки не предобразованы, а формируются в процессе иммунного ответа на антиген de novo;

3. в результате адаптивного иммунного ответа формируется иммунологическая память (память о встрече с антигеном), ускоряющая и усиливающая ответ на повторное поступление антигена.

Антигены

Антигены - это биологические тела и молекулы, несущие признаки чужеродной генетической информации и способные вызвать иммунный ответ. Антигены - это не особый класс соединений: ими могут быть белки и некоторые другие макромолекулы (например, полисахариды), в том числе комплексированные с любыми химическими структурами.

Антиген обязательно должен обладать следующими свойствами:

- чужеродностью , т.е. антиген должен быть носителем чужой генетической информации. Чем дальше в эволюционном отношении находится друг от друга индивидуумы, тем большей чужеродностью может обладать данный антиген. Однако, антигены, которые несут одинаковые функции у удаленный в эволюционном отношении видов (гемоглобин) является плохими антигенами, по в результате эволюции в них не произошли значительные преобразования.

- иммуногенность , т.е. антиген должен не просто проникнуть в организм и связаться и рецепторами Ig, но и должен вызвать иммунный ответ. Ряд химических веществ может просто взаимодействовать с поверхностными рецепторами В-лимфоцитов, либо с ТКР, но при этом пролиферации этих клеток не произойдет или же не будет определенного иммунного ответа. Иммуногенность возрастает по мере увеличения «эволюционного расстояния» между донором и реципиентом белка. В основе повышения иммуногенности лежит увеличение различий в первичной структуре белков.

Ряд низкомолекулярных соединений может обладать свойством чужеродности, антигенности, но при этом не обладают иммуногенностью. Эти вещества называется гаптенами. Например, наркотики, гормоны непептидной природы, лекарства являются гаптенами.

- специфичность , т.е. определенный антиген может взаимодействовать с определенным антителом или Т-клеточным рецептором. Различают типовую, групповую, патологическую, видовую и др. специфичности.

- антигенность , подразумевается наличие у индивидуума специфичных к данному антигену растворимых антител или В и Т-клеточных рецепторов.

Антигенами могут быть белки и углеводы. Липиды, нуклеиновые кислоты и другие органические вещества (в некоторых случаях - также неор-

ганические, например, некоторые металлы) эффективны лишь в составе

комплексных соединений (например, в комплексе с белками), определяя

при этом не иммуногенность, а специфичность антигена (т.е. выполняя роль эпитопа). Важнейшее качество, определяющее иммуногенность антигенов, - размер молекулы. С повышением молекулярной массы полимерных молекул

увеличивается их иммуногенность.

Самыми хорошими АГ являются белки. Особенно это касается белков, в состав которых входит большое разнообразие аминокислотных остатков. Гомополимеры, например, коллаген, кератин – плохие АГ.

В АГ различают высокомолекулярную часть (тягач или шлеппер) и антигенные детерменанты, т.е. те участки молекулы, которые несут свойство чужеродности и которые непосредственно узнаются B и Т-клеточными рецепторами или Ig. Эти антигенные детерменанты называются эпитопами . Каждый эпитоп взаимодействует с соответствующим паратопом антител. Различают поверхностные и скрытые эпитопы. У одного и того же АГ может быть много эпитопов. Причем иногда эти эпитопы могут иметь разную специфичность. Эпитоп необязательно представлен аминокислотными остатками находящимися в первичной последовательности рядом. Он может формироваться при образовании третичной структуры белка. Кроме того в структуре антигена различают агретоп - это участок АГ, который взаимодействует в дальнейшем с антигенами МНС.

Различают тимус-зависимые (ТЗА) и тимус-независимые антигены (ТНА). ТЗА должны для полноценного иммунного ответа сначала представлены в иммуногеном виде Т-лимфоцитам. Только в таком виде они могут вызвать полноценный иммунный ответ, заключающийся в образовании антител, либо в цитотоксических реакциях. Т.о. эти АГ должны взаимодействовать с рецепторами классов МНС-1 и МНС-2. Это явление называется рестрикцией антигена по МНС. Большинство антигенов являются тимусзависимыми.

ТНА-антигены, как правило, крупные молекулы (с молекулярной массой порядка 103 кДа). По химической природе это могут быть полисахариды,

ЛПС или белки. Они поливалентны, содержат повторяющиеся эпитопы. Для ответа на эти антигены не требуются их обработка и презентация АПК. Они непосредственно взаимодействуют с В-лимфоцитами. Различают ТН1 и ТН2 антигены. В качестве примераТН-1 антигенов можно привести большинство бактериальных ЛПС, полифлагеллин, полисахарид бордетелл, а также их конъюгаты с гаптенами. Важно отметить, что ТН-1 антигены обладают митогенными свойствами в отношении В-клеток. К ТН-2 антигенам относят полисахаридные антигены (в том числе бактериальные), конъюгаты гаптенов с фиколлом, лева ном, некоторые разновидности ЛПС, некоторые синтетические антигены (например, поливинилпирролидон).

Основной изотип антител, специфичных к тимуснезависимым антиге-

нам, - IgM; при этом переключения изотипа обычно не происходит, отсутст-

вует «созревание аффинитета» и практически не формируется иммунологи-

ческая память и, как следствие, не развивается вторичный иммунный ответ.

Антигены эритроцитов человека

На поверхности различных клеток крови находятся рецепторы, которые могут быть узкоспецифичны и характерны только для данного индивидуума. Что касается эритроцитов, то всю популяцию человека по АГ, находящихся на поверхности эритроцитов можно разделить на 4 группы. Это различие между группами крови людей основано на следующих фактах:

На поверхности эритроцитов группы крови О (I гр) находится определенный гликопротеид (т.н. вещество Н). У людей группы крови А (II) к этому веществу присоединяется N-ацетилглюкозамин. У людей группы крови В (III) к веществу Н присоединяется галактоза. У людей с группой кров АВ (IV) к веществу Н присоединяется и N-ацетилглюкозамин и галактоза. Присоединение сахаров осуществляет спецефические ферменты - гликозилтрансферазы.

Классификация на эти группы обусловлена не только различием в их поверхностном фенотипе (АГ, А,В, О, АВ), но и особенностями генотипа. У людей группа крови О (I) нет генов ответственных за экспрессию гликозилтрансфераз, которые могут привести к переносу на вещество Н N-ацетилглюкозамина или галактозы. У людей с группой крови I и II имеются гены, ответственные за экспрессию соответствующих гликозилтранфераз. У людей с группой крови IV имеются оба гена.

В крови у людей с группой крови А имеются антитела (изогемоглютенины) к антигенам группы крови В . У людей группы крови В , соответственно имеются антитела к антигену А (анти-А или a). У людей группы крови О имеются и анти-a и анти-β. А у людей группы крови АВ их нет.

При переливании крови важно учесть группы крови, поскольку могут случиться реакции, связанные с несовместимостью. Если к данному АГ при переливании в крови реципиента имеются антитела, то могут произойти следующие реакции:

1) так как эти антитела Ig класса М , которые являются поливалентными, они могут взаимодействовать с несколькими эритроцитами одновременно, а на в поверхности одного и того же эритроцита могут сорбироваться антигенсвязывающие участки разных Ig M . В результате этого происходит склеивание эритроцитов (агглютинация). Эти комплексы могут в дальнейшем оседать на поверхности сосудов, вызывая воспаление и активации системы фибринолиза.

2) Ig связавшись с эритроцитами могут активировать систему комплемента с образованием МАК, что приводит к их гемолизу.

Существует другая группа антигенов, которые тоже могут вызвать патологические гемотрансфузионные реакции. Это система называется резус. В популяции человека существует 2 группы «+» и «–» резус. Это обусловлено наличием на поверхности у одной группы резус-антигена Д (или Rh) у другой группы этого антигена нет, но зато есть антитела к антигену Д (анти-Д).

Антиген Д кодируется соответствующим геном.

Особое внимание заслуживает система Rh во время беременности поскольку. Если мать RhД-, а плод RhД+, то эритроциты плода попадают в кровь матери обычно во время родов и повреждения родовых путей. Это стимулирует образование антител анти-Rh класса IgG в послеродовой период. При последующей беременности IgG-антитела проходят через плаценту в кровь плода (антитела IgM не проникают через плаценту). Если плод опять окажется RhД+, IgG –антитела матери вызывают разрушение его эритроцитов. Поэтому введение Ig-антирезусных (анти-Д_ во время родовой деятельности при первой беременности может препятствовать сенсибилизации иммунной системы матери эритроцитами плода, так как эти Ig будут лизировать эритроциты плода посредством запуска системы комплемента.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11

Антигены эритроцитов.

На поверхностной мембране и строме эритроцитов содержится более 100 антигенов 19 отдельных систем.

В эритроцитах человека различают III основных разновидности антигенов:

гетерофильные антигены – встречаются у многих видов животных и бактерий;

неспецифические или видовые антигены – не встречаются у других видов животных, но содержатся в эритроцитах всех людей;

специфические или групповые антигены – изоАГ – содержатся в эритроцитах одних индивидуумов и отсутствуют у других.

Из всех систем эритроцитарных антигенов наибольшее значение имеют системы АВО и Rh.

Система АВО . В 1901 г. Ландштайнер обнаружил в эритроцитах человека два антигена: А и В. по содержанию их люди делятся на 4 группы:

О (I) – нет антигенов А и В;

А (II) – есть антиген А;

В (III) – есть антиген В;

АВ (IV) – есть оба антигена А и В.

Антигены А и В содержатся только в лейкоцитах, трмбоцитах, различных тканях, слюне, сперме, слезах, моче, но отсутствуют в хрусталике глаза, плаценте, коже и спиномозговой жидкости.

В сыворотки крови постоянно содержатся антитела к тем антигенам, которые отсутствуют в эритроцитах данного индивидуума. Эти антитела вызывают агглютинацию эритроцитов, содержащих гомологичный антиген. На основе этих закономерностей было создано учение о совместимости групп крови и разработаны схемы, обеспечивающие возможность безопасного переливания крови с лечебной целью.

Определение группы крови используется для определения отцовства, материнства, а так же в судебно-медицинской практике и криминалистике – для установления пятен крови и пятен другого происхождения.

Система Rh-антигенов . Rh-антиген открыт Ландштанером в 1940 году. Они установили, что сыворотка кроликов, иммунизированных эритроцитами обезьян макаки-резус, агглютинирует эритроциты человека. Из этого вытекало, что эритроциты обезьян и человека содержат общий антиген, названный Rh-антигеном. Он есть в эритроцитах 85 % популяции европейских народов.

Имеется 6 разновидностей этого антигена: C, D, E, c, d, e. Главная роль принадлежит антигену D. Он имеется у населения всего мира, за исключением некоторых народностей Дальнего Востока, где встречается только у 4 %. С этим антигеном связаны иммунологические конфликты между организмом резус-отрицательной матери и резус-положительного плода, приводящим к гемолитической болезни новорожденных. Для нейтрализации резус-антигенов плода женщинам перед родами вводят антирезусную сыворотку, блокирующую Rh-антигены и отменяющую индукцию образования противорезусных антител в организме роженицы.

Лейкоцитарные антигены . Видовая антигенная специфичность лейкоцитов установлена Безредко А.М. в 1900 году. В настоящее время известно около 30 лейкоцитарных антигенов, которые содержаться и в других тканях: тромбоцитах, гранулоцитах, фибробластах, эпителии кожи, сперме. В связи с тем, что эти антигены вызывают реакции трансплантационного иммунитета из называют трансплантационными антигенами или антигенами гистосовместимости.

В химическом отношении трансплантационные антигены являются липопротеинами, гликопротеинами или белками. У человека они относятся к системе HLA, у мышей к Н2.

Молекулы HLA-генов состоят из 2-х легких и 2-х тяжелых цепей, т.е. имеют структурное сходство с иммуноглобулинами. Поэтому они могут выполнять функции рецепторов Т-лимфоцитов. Все HLA–гены контролируются отдельным локусом генов, расположенным на коротком плече VI пары хромосом. Система HLA является самостоятельной и не зависит от эритроцитарных систем. Антигены различают по локусам A, B, C, D, DR.

Общее количество белка крови 60-80 г/л. Различают несколько белковых фракций, выполняющих специфические функции.

1. Альбумины (40-60 г/л) обладают высокой коллоидно-осмотической активностью.

2. Глобулины a, b, g (20-40 г/л) создают гуморальный иммунитет, образуя различные антитела, называемые иммуноглобулинами (IgM, IgG).

3. Фибриноген (2-4 г/л) - главный фактор механизма свертывания крови.

АНТИГЕНЫ (греч. ànti - против, genos - создавать) - вещества, обладающие способностью вызывать в организме образование антител и вступать с ними в реакцию. В мембрану эритроцитов встроен целый ряд специфических полисахаридов - аминокислотных комплексов, обладающих антигенными свойствами. Эти комплексы называются агглютиногенами.

К настоящему времени в эритроцитах человека обнаружено более 400 антигенов, локализованных в мембране эритроцитов, 140 из которых объединены в 20 генетически контролируемых систем. Остальные антигены являются общими или индивидуальными. Для клинической практики наиболее важны система АВО и резус-система (Rh-система). Выделяют также группы Келл-Челано, Кидд, Лютеран, Даффи, Диего и др. Последние имеют значение лишь при частых переливаниях крови или при беременности, несовместимой по какому-то из этих агглютиногенов. Поэтому переливать повторно кровь от одного и того же донора не рекомендуется.

Антигены эритроцитов появляются на втором месяце эмбрионального развития, однако к моменту рождения ребенка агглютинабельная их активность низка и составляет 1/5 активности взрослых.

АНТИТЕЛА - вещества, вступающие в реакцию с антигеном. Естественные антитела всегда присутствуют в плазме крови и принадлежат к фракции гамма-глобулинов. К ним относятся антитела системы АВО - a и b агглютинины, которые появляются у человека в первые месяцы после рождения и достигают максимального количества к 5-10 годам жизни.

РЕАКЦИЯ АГГЛЮТИНАЦИИ - склеивание и выпадение в осадок эритроцитов под действием специфических аннтител - агглютининов. Полагают, что молекула антитела двумя центрами связывания образует мостик между двумя эритроцитами. Каждый из этих эритроцитов в свою очередь связывается с другими эритроцитами и в результате происходит их склеивание. При переливании несовместимой крови агглютинация приводит к гемолизу эритроцитов и освобождению факторов свертывания крови. Образующиеся сгустки закупоривают мелкие сосуды и тем самым нарушают капиллярное кровообращение.

Агглютинация возникает при встрече одноименных агглютиногенов донора и агглютининов реципиента.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Про заболевания ЖКТ