Про заболевания ЖКТ

Белок является одним из основных и жизненно необходимых пищевых ингредиентов. Он используется организмов прежде всего для пластических целей, что делает его особенно важным, совершенно незаменимым для растущего организма.

Для правильного развития ребенка необходимо регулярное и достаточное введение полноценных белков. Белки пищи частично используются организмом ребенка и для энергетических целей.

Всасывание аминокислот, а может быть и более сложных соединений - полипептидов, образующихся, как указывалось выше, под влиянием воздействия на белки пищи целого ряда протеаз пищеварительного тракта, происходит весьма совершенно и почти не зависит от возраста ребенка и способа его вскармливания.

Количество всосавшегося в кишечник азота не поддается точному учету, но практически можно считать, что количество азота в стуле является мерилом неиспользованных организмом белков пищи.

У грудных детей, вскармливаемых женским молоком, в кишечнике всасывается в среднем около 80-90% всего введенного азота. При смешанном и искусственном вскармливании процент азота, резорбируемого организмом, несколько меньше. Количество используемого азота до известной степени зависит от характера белка, его количества и сочетания с одновременно вводимыми другими ингредиентами пищи.

После приема белковой пищи количество общего остаточного и аминного азота крови нарастает, достигает у грудных детей максимума через 3-4 часа после кормления и через 5 часов снова снижается к первоначальному уровню. У новорожденных максимум пищевой гиперазотемии наступает раньше. Дальнейшая судьба всасывающихся в кишечнике аминокислот изучена мало. Аминокислоты с током крови достигают отдельных клеток организма, где и используются для построения белковых молекул тканей. Частично аминокислоты подвергаются дезаминированию; часть адсорбируется эритроцитами. Часть белков, всосавшихся в кишечнике в виде аминокислот, снова выделяется в желудок и снова подвергается расщеплению и всасыванию.

Существенное значение для оценки особенностей азотистого обмена у детей представляет задержка азота организмом. По прежним наблюдениям, процент использования азота пищи колеблется в зависимости от возраста ребенка и способа вскармливания, тогда как количество ретенированного азота зависит от возраста и почти не зависит от размеров белковой нагрузки. Однако новейшие наблюдения показывают, что как использование, так и задержка азота пищи зависят не только от возрастных потребностей организма, но и от количества введенного с пищей белка. Улучшение задержки под влиянием повышения нагрузки белками имеет, однако, известные пределы; после дачи детям более 5-6 г белка на 1 кг веса дальнейшее увеличение задержки азота приостанавливается.

Грудной ребенок с его интенсивно текущими пластическими процессами задерживает белков относительно вдвое больше, чем взрослый. Несомненно, что между энергией роста и степенью усвоения белков существует известный параллелизм, но ошибочно думать, что всякой повышенной задержке азота соответствует улучшение процессов роста и наоборот.

Большая часть избыточно введенных белков вступает в энергетический обмен и ведет к чрезмерному теплообразованию; меньшая часть временно может вести к гиперпротеинемии. Деэаминированный остаток белков, введенных с пищей в избыточном количестве, ведет к отложению жира и углеводов.

У взрослого, как правило, имеется азотистое равновесие, у детей - положительный азотистый баланс.

Под азотистым равновесием понимают такое состояние белкового метаболизма, когда количества азота, поступающего в организм с пищей, и азота, выделяющегося с мочой и стулом, равны между собой. При положительном балансе количество вводимого азота больше общего количества выводимых азотистых начал.

У детей первых дней периода новорожденности, по-видимому, может быть временно отрицательный азотистый баланс. При искусственном вскармливании отрицательное азотистое равновесие у новорожденных может сменяться положительным балансом несколько позже. Относительная величина положительного баланса азота достигает максимума в первом квартале 1-го года жизни.

За счет белков пищи должно покрываться приблизительно 10-15% общего суточного количества калорий. Дети, получающие только грудное молоко, должны получать 1,2-2 г белка в день на 1 кг веса, дети этого же возраста, находящиеся на искусственном питании, нуждаются в 3-4 г белка на единицу веса. В более старшем возрасте суточная потребность в белках равна 3,0-3,5 г на 1 кг веса.

Дети долгое время могут достаточно хорошо развиваться на гораздо меньших белковых нагрузках, что, однако, надо признать нецелесообразным.

Ребенок нуждается не в минимальном, а в оптимальном для него количестве белка, что только и может обеспечить ему вполне правильное течение процессов межуточного обмена, а следовательно, и роста.

При недостатке белков нарушается переваривание углеводов. Не должно быть, конечно, и избытка белков, что легко ведет у детей к сдвигу щелочно-кислотного равновесия в сторону ацидоза, столь небезразличного для ребенка.

Вопрос об оптимальном для ребенка белковом рационе не может ограничиваться лишь одной количественной стороной. Гораздо большее значение имеет качество вводимых белков, наличие в них аминокислот, необходимых для построения белковой молекулы тканей детского тела. К таким жизненно необходимым аминокислотам относятся триптофан, лизин, валин, лейцин, изолейцин, аргинин, метионин, треанин, фенилаланин, гистидин.

Правильный белковый обмен возможен лишь при надлежащей корреляции между белками и другими основными пищевыми ингредиентами. Введение углеводов значительно улучшает задержку белков, тогда как жиры несколько ухудшают их использование. Достаточное введение воды и солей - необходимое условие для правильного течения метаболизма белков.

Конечные продукты азотистого обмена выделяются главным образом с мочой; количественные взаимоотношения между главнейшими азотистыми компонентами мочи (мочевиной, аммиаком, мочевой кислотой, креатинином, креатином, аминокислотами и т. д.) обнаруживают определенные возрастные особенности, что зависит от своеобразия эндогенного и экзогенного обмена белков у детей.

Для новорожденных характерно большое количество выделяемого с мочой азота, достигающее в первые дни жизни 6-7% по отношению к суточному количеству мочи. С возрастом процентное содержание азота в моче уменьшается, но общее суточное количество азота, особенно в течение первых 4 лет жизни, интенсивно увеличивается; количество азота на I кг веса достигает максимальной величины к 6 годам, а затем начинает постепенно снижаться.

У грудных детей за счет мочевины выделяется азота относительно несколько меньше, а за счет аммиака и мочевой кислоты относительно значительно больше, чем у взрослого.

Большая часть азота, поступающего в организм в качестве белков пищи, выделяется с мочой в виде мочевины. У новорожденных в первые дни жизни количество мочевины достигает приблизительно 85% общего азота мочи. С 4-5-го дня жизни количество мочевины снижается до 60%. а с 2 месяцев начинает снова нарастать.

У грудных детей за счет мочевины выделяется азота на 8- 10%. а У более старших детей на 3-5%, меньше, чем у взрослых. Количество мочевины зависит от характера и количества получаемых ребенком белков. Меньшее количество мочевины надо считать явлением компенсаторным, так как ребенок нуждается в относительно больших количествах аммиака.

Однако этот вопрос не может считаться окончательно решенным; в настоящее время допускается, что фермент аргиназа действует на аминокислоту аргинин и расщепляет ее на мочевину и орнитин; орнитин соединяется с аммиаком и превращает его в аргинин и т. д. Этот путь образования мочевины еще нельзя считать достаточно изученным.

Мочевой кислоты особенно много в моче новорожденных; максимум выделения ее приходится на 3-4-й день жизни. Обильное выделение мочевой кислоты, кислая реакция и малое количество мочи являются причиной возникновения у новорожденных так называемого мочекислого инфаркта - отложения в собирательных трубочках и в ductus papillares почек солей мочевой кислоты, мочекислых аммония и натрия и щавелевокислой извести. С постепенным увеличением количества мочи мочевая кислота вымывается. Эта так называемая инфарктная моча мутна, высокого удельного веса, дает обильный красноватый осадок свободных уратов и аморфных мочекислых солей. Инфарктная моча наблюдается у 85-100% здоровых новорожденных.

Мочевая кислота и пуриновые основания мочи у грудных детей - эндогенного происхождения; происходят они главным образом из нуклеопротеидов пищеварительных соков и из слущившихся клеток кишечного эпителия.

У старших детей выделяемая с мочой мочевая кислота - экзогенно-эндогенного происхождения; количество ее в значительной мере определяется характером пищи.

Суточное количество мочевой кислоты, выделяемое с мочой, с возрастом увеличивается; количество мочевой кислоты, рассчитанное на 1 кг веса (относительное выделение), наоборот, с возрастом падает, уменьшается также и процентное отношение мочевой кислоты мочи к общему азоту мочи.

Нарастание с возрастом образования мочевины и относительное уменьшение мочевой кислоты говорят 66 уменьшении интенсивности процессов роста и о большем совершенстве обмена веществ.

Аммиак выделяется в моче в виде солей серной и фосфорной кислот. За счет аммиака у детей выделяется относительно больше азота, чем у взрослых.

Избыток аммиака в детской моче зависит от неполного превращения его в мочевину. Аммиак входит в состав солей серной и фосфорной кислот, образующихся при расщеплении белка и фосфорсодержащих органических соединений. У взрослого это осуществляется отчасти за счет щелочных земель (Na, К, Са, Mg), поступающих в достаточном количестве с пищей. Детский организм эти соли использует для пластических целей; кроме того, всасывание их в кишечнике несколько затруднено образованием мыл вследствие относительно большого содержания жира в пище ребенка.

Повышенное содержание аммиака в моче не говорит об ацидозе и ацидурии, а скорее об алкалопении, указывая на некоторый недостаток щелочей. У старших детей количество аммиака в моче зависит от характера пищи, главным образом от характера ее зольного остатка; при большом количестве овощей поступает много щелочей и, следовательно, меньше выделяется аммиака с мочой; при мясной пище, наоборот, больше образуется кислых продуктов межуточного обмена, нейтрализуемых аммиаком и выделяющихся с мочой в виде соответствующих соединений.

Аминокислоты у грудных детей выделяются с мочой в значительно большем количестве, чем у взрослых; в моче недоношенных детей их особенно много.

Креатинин происходит из креатина, образующегося в мышцах, и потому на него следует смотреть как на особый продукт мышечного обмена. Сравнительно слабым развитием у детей мышечной системы и значительно меньшим содержанием в их мышцах креатина, по-видимому, и объясняется малое содержание креатинина в моче детей.- Между количеством креатинина в моче и массой тела (вернее, количеством мышц) имеется известная пропорциональность.

В отличие от мочи взрослых, в моче детей имеется креатин. У мальчиков он обнаруживается до 6 лет, у девочек - значительно дольше, до периода полового созревания. Причины креатинурии у детей окончательно не выяснены. Надо полагать, что сказывается своеобразие углеводного (Толкачевская) и интенсивность водного обмена, ведущих к вымыванию креатина, но не исключено влияние и некоторого несовершенства обмена, вследствие чего креатин не превращается в креатинин.

I. Цель изучения: знать конечные продукты обмена белков в организме, основные источники образования аммиака, пути его обезвреживания из организма.

II. Уметь количественно определять содержание мочевины по цветной реакции с диацетилмонооксимом в сыворотке крови; познакомиться с физико-химическими свойствами мочевины.

III. Исходный уровень знаний: качественные реакции на аммиак (неорганическая химия).

IV. Ответить на вопросы контрольных итоговых билетов по теме: «Распад простых белков. Метаболизм аминокислот, конечные продукты азотистого обмена».

1. Конечными продуктами распада азотсодержащих веществ являются углекислый газ, вода и аммиак, в отличие от углеводов и липидов. Источником аммиака в организме являются аминокислоты, азотистые основания, амины. Аммиак образуется в результате прямого и непрямого дезаминирования аминокислот, (основной источник) гидролитического дезаминирования азотистых оснований, инактивации биогенных аминов.

2. Аммиак токсичен и его действие проявляется в нескольких функциональных системах: а) легко проникая через мембраны (нарушая трансмембранный перенос Na + и К +) в митохондриях связывается с α-кетоглутаратом и другими кетокислотами (ЦТК), образуя аминокислоты; в этих процессах используются и восстановительные эквиваленты (NADH+H +).

б) при высоких концентрациях аммиака глутамат и аспартат образуют амиды, используя и АТФ нарушая все тот же ЦТК, являющийся главным энергетическим источником работы мозга. в) Накопление глутамата в мозге повышает осмотическое давление, что ведет к развитию отека. г) Повышение концентрации аммиака в крови (N – 0.4 – 0.7 мг/л) сдвигает рН в щелочную сторону, повышая сродство О 2 к гемоглобину, что вызывает гипоксию нервной ткани. д) Уменьшение концентрации α-кетоглутарата вызывает угнетение обмена аминокислот (синтеза нейромедиаторов), ускорение синтеза оксалоацетата из пирувата, что связано с повышенным использованием СО 2 .

3. Гипераммониемия прежде всего отрицательно действует на мозг и сопровождается тошнотой, головокружением, потерей сознания, отставанием умственного развития (при хронической форме).

4. Основной реакцией связывания аммиака во всех клетках является синтез глутамина под действием глутаминсинтетазы в митохондриях, где используется для этой цели АТФ. Глутамин облегченной диффузией поступает в кровь и транспортируется в кишечник и почки. В кишечнике под действием глутаминазы образуется глутамат, который трансаминируется с пируватом, превращая его в аланин, поглощаемый печенью; 5% аммиака удаляется через кишечник, остальные 90% выводятся почками.

5. В почках также идет гидролиз глутамина с образованием аммиака под действием глутаминазы, которая активируется ацидозом. В просвете канальцев аммиак нейтрализует кислые продукты обмена образуя аммонийные соли для выведения, одновременно сокращая потери К + и Na + . (N – 0,5г солей аммония в сутки).

6. Высокий уровень глутамина в крови обуславливает его использование во многих анаболических реакциях в качестве донора азота (синтез азотистых оснований и др.)

7. Наиболее значительные количества аммиака обезвреживаются в печени синтезом мочевины (86% азота в моче) в количестве ~25 г/сутки. Биосинтез мочевины – циклический процесс, где ключевым веществом является орнитин, присоединяющий карбомоил, образованный из NH 3 и CO 2 при активации 2АТФ. Образованный цитруллин в митохондриях транспортируется в цитозоль для введения второго атома азота из аспартата с образованием аргинина. Аргинин гидролизуется аргиназой и превращается снова в орнитин, а вторым продуктом гидролиза является мочевина, которая по сути дела в этом цикле образовалась из двух атомов азота (источники –NH 3 и аспартат) и одного атома углерода (из СО 2). Энергией обеспечивают 3АТФ (2-при образовании карбомолфосфата и 1 при образовании аргининосукцината).

8. Орнитиновый цикл тесно связан с ЦТК, т.к. аспартат образуется при трансаминировании ЩУК из ЦТК, а фумарат, оставшийся из аспартата после удаления NH 3 , возвращается в ЦТК и, при превращении его в ЩУК, образуются 3 АТФ, обеспечивающие биосинтез молекулы мочевины.

9. Наследственные нарушения орнитинового цикла (цитруллинемия, аргининосукцинатурия, гипераргининемия) ведут к гиперамминиемии и в тяжелых случаях могут привести к печеночной коме.

10. Норма мочевины в крови 2,5-8,3 ммоль/л. Понижение наблюдается при болезнях печени, повышение – результат почечной недостаточности.

Лабораторная работа

Биосинтез мочевины

I. Цель изучения: знать конечные продукты обмена белков в организме, основные источники образования аммиака, пути его обезвреживания из организма.

II. Уметь количественно определять содержание мочевины по цветной реакции с диацетилмонооксимом в сыворотке крови; познакомиться с физико-химическими свойствами мочевины.

III. Исходный уровень знаний: качественные реакции на аммиак (неорганическая химия).

IV. Ответить на вопросы контрольных итоговых билетов по теме: «Распад простых белков. Метаболизм аминокислот, конечные продукты азотистого обмена».

1. Конечными продуктами распада азотсодержащих веществ являются углекислый газ, вода и аммиак, в отличие от углеводов и липидов. Источником аммиака в организме являются аминокислоты, азотистые основания, амины. Аммиак образуется в результате прямого и непрямого дезаминирования аминокислот, (основной источник) гидролитического дезаминирования азотистых оснований, инактивации биогенных аминов.

2. Аммиак токсичен и его действие проявляется в нескольких функциональных системах: а) легко проникая через мембраны (нарушая трансмембранный перенос Na + и К +) в митохондриях связывается с α-кетоглутаратом и другими кетокислотами (ЦТК), образуя аминокислоты; в этих процессах используются и восстановительные эквиваленты (NADH+H +).

б) при высоких концентрациях аммиака глутамат и аспартат образуют амиды, используя и АТФ нарушая все тот же ЦТК, являющийся главным энергетическим источником работы мозга. в) Накопление глутамата в мозге повышает осмотическое давление, что ведет к развитию отека. г) Повышение концентрации аммиака в крови (N – 0.4 – 0.7 мг/л) сдвигает рН в щелочную сторону, повышая сродство О 2 к гемоглобину, что вызывает гипоксию нервной ткани. д) Уменьшение концентрации α-кетоглутарата вызывает угнетение обмена аминокислот (синтеза нейромедиаторов), ускорение синтеза оксалоацетата из пирувата, что связано с повышенным использованием СО 2 .

3. Гипераммониемия прежде всего отрицательно действует на мозг и сопровождается тошнотой, головокружением, потерей сознания, отставанием умственного развития (при хронической форме).

4. Основной реакцией связывания аммиака во всех клетках является синтез глутамина под действием глутаминсинтетазы в митохондриях, где используется для этой цели АТФ. Глутамин облегченной диффузией поступает в кровь и транспортируется в кишечник и почки. В кишечнике под действием глутаминазы образуется глутамат, который трансаминируется с пируватом, превращая его в аланин, поглощаемый печенью; 5% аммиака удаляется через кишечник, остальные 90% выводятся почками.

5. В почках также идет гидролиз глутамина с образованием аммиака под действием глутаминазы, которая активируется ацидозом. В просвете канальцев аммиак нейтрализует кислые продукты обмена образуя аммонийные соли для выведения, одновременно сокращая потери К + и Na + . (N – 0,5г солей аммония в сутки).

6. Высокий уровень глутамина в крови обуславливает его использование во многих анаболических реакциях в качестве донора азота (синтез азотистых оснований и др.)

7. Наиболее значительные количества аммиака обезвреживаются в печени синтезом мочевины (86% азота в моче) в количестве ~25 г/сутки. Биосинтез мочевины – циклический процесс, где ключевым веществом является орнитин, присоединяющий карбомоил, образованный из NH 3 и CO 2 при активации 2АТФ. Образованный цитруллин в митохондриях транспортируется в цитозоль для введения второго атома азота из аспартата с образованием аргинина. Аргинин гидролизуется аргиназой и превращается снова в орнитин, а вторым продуктом гидролиза является мочевина, которая по сути дела в этом цикле образовалась из двух атомов азота (источники –NH 3 и аспартат) и одного атома углерода (из СО 2). Энергией обеспечивают 3АТФ (2-при образовании карбомолфосфата и 1 при образовании аргининосукцината).

8. Орнитиновый цикл тесно связан с ЦТК, т.к. аспартат образуется при трансаминировании ЩУК из ЦТК, а фумарат, оставшийся из аспартата после удаления NH 3 , возвращается в ЦТК и, при превращении его в ЩУК, образуются 3 АТФ, обеспечивающие биосинтез молекулы мочевины.

9. Наследственные нарушения орнитинового цикла (цитруллинемия, аргининосукцинатурия, гипераргининемия) ведут к гиперамминиемии и в тяжелых случаях могут привести к печеночной коме.

10. Норма мочевины в крови 2,5-8,3 ммоль/л. Понижение наблюдается при болезнях печени, повышение – результат почечной недостаточности.

Лабораторная работа

Казалось бы, такое вещество, как мочевая кислота, трудно сочетается с кровью. Вот в моче – другое дело, там ей место быть. Между тем, в организме постоянно идут различные обменные процессы с образованием солей, кислот, щелочей и других химических соединений, которые выводятся мочой и желудочно-кишечным трактом из организма, поступая туда из кровеносного русла.

Мочевая кислота (МК) тоже присутствует в крови, она образуется в небольших количествах из пуриновых оснований. Необходимые организму пуриновые основания, в основном, поступают извне, с пищевыми продуктами, и используются в синтезе нуклеиновых кислот, хотя в некоторых количествах вырабатываются организмом тоже. Что касается мочевой кислоты, то она является конечным продуктом пуринового обмена и сама по себе организму, в общем-то, не нужна. Ее повышенный уровень (гиперурикемия) указывает на нарушение пуринового обмена и может грозить отложением ненужных человеку солей в суставах и других тканях, вызывая не только неприятные ощущения, но и тяжелые болезни.

Норма мочевой кислоты и повышенная концентрация

Норма мочевой кислоты в крови у мужчин не должна превышать 7,0 мг/дл (70,0 мг/л) или находится в пределах 0,24 – 0,50 ммоль/л. У женщин норма несколько ниже – до 5,7 мг/дл (57 мг/л) или 0,16 – 0,44 ммоль/л соответственно.

Образованная в ходе пуринового обмена МК должна раствориться в плазме, чтобы в дальнейшем уйти через почки, однако плазма не может растворить мочевой кислоты более чем 0,42 ммоль/л. С мочой из организма в норме удаляется 2,36 – 5,90 ммоль/сутки (250 – 750 мг/сут).

При своей высокой концентрации мочевая кислота образует соль (урат натрия), которая откладывается в тофусы (своеобразные узелки) в различных видах тканей, обладающих сродством к МК. Чаще всего тофусы можно наблюдать на ушных раковинах, кистях рук, стопах, но излюбленным местом являются поверхности суставов (локоть, голеностоп) и сухожильные влагалища. В редких случаях они способны сливаться и образовывать язвы, из которых в виде белой сухой массы выходят кристаллы уратов. Иногда ураты обнаруживаются в синовиальных сумках, вызывая воспаление, боль, ограничение подвижности (синовит). Соли мочевой кислоты можно найти в костях с развитием деструктивных изменений костных тканей.

Уровень мочевой кислоты в крови зависит от ее продукции в ходе пуринового обмена, клубочковой фильтрации и реабсорбции, а также канальцевой секреции. Чаще всего повышенная концентрация МК является следствием неправильного питания, особенно, это касается людей, имеющих наследственную патологию (аутосомно-доминантные или связанные с Х-хромосомой ферментопатии), при которой увеличивается выработка мочевой кислоты в организме или замедляется ее выведение. Генетически обусловленная гиперурикемия называется первичной , вторичная вытекает из ряда других патологических состояний или формируется под воздействием образа жизни.

Таким образом, можно сделать вывод, что причинами повышения мочевой кислоты в крови (излишняя продукция или замедленное выведение) являются:

  • Генетический фактор;
  • Неправильное питание;
  • Почечная недостаточность (нарушение клубочковой фильтрации, уменьшение канальцевой секреции – МК из кровяного русла не переходит в мочу);
  • Ускоренный обмен нуклеотидов ( , лимфо- и миелопролиферативные болезни, гемолитическая ).
  • Применение салициловых препаратов и .

Главные причины повышения…

Одной из причин повышения мочевой кислоты в крови медицина называет неправильное питание, а именно, потребление неразумного количества продуктов, аккумулирующих пуриновые вещества. Это – копчености (рыба и мясо), консервы (особенно – шпроты), печень говяжья и свиная, почки, жареные мясные блюда, грибочки и другие всякие вкусности. Большая любовь к этим продуктам приводит к тому, что нужные организму пуриновые основания усваиваются, а конечный продукт – мочевая кислота, оказывается лишней.

Следует отметить, что продукты животного происхождения, играющие не последнюю роль в возрастании концентрации мочевой кислоты, поскольку несут пуриновые основания, как правило, содержат большое количество холестерина . Увлекаясь такими любимыми блюдами, не соблюдая меры, человек может наносить двойной удар по своему организму .

Диета, обедненная пуринами, состоит из молочных продуктов, груш и яблок, огурцов (не маринованных, конечно), ягод, картофеля и других овощей в свежем виде. Консервация, жарка или всякое «колдовство» над полуфабрикатами заметно ухудшают качество пищи в этом плане (содержание пуринов в еде и накопление мочевой кислоты в организме).

…И главные проявления

Лишняя мочевая кислота разносится по организму, где выражение ее поведения может иметь несколько вариантов:

  1. Кристаллы уратов откладываются и образуют микротофусы в хрящевых, костных и соединительных тканях, вызывая подагрические заболевания. Накопленные в хряще ураты, нередко освобождаются из тофусов. Обычно этому предшествует воздействие провоцирующих гиперурикемию факторов, например, новое поступление пуринов и, соответственно, мочевой кислоты. Кристаллы солей захватываются лейкоцитами (фагоцитоз) и обнаруживаются в синовиальной жидкости суставов (синовит). Это – острый приступ подагрического артрита .
  2. Ураты, попадая в почки, могут откладываться в интерстициальной почечной ткани и приводить к формированию подагрической нефропатии, а следом – и почечной недостаточности. Первыми симптомами болезни можно считать перманентно низкий удельный вес мочи с появлением в ней белка и повышение артериального давления (артериальная гипертензия), в дальнейшем происходят изменения органов выделительной системы, развивается пиелонефрит. Завершением процесса считают формирование почечной недостаточности .
  3. Повышенное содержание мочевой кислоты, образование солей (ураты и кальциевые конкременты) при ее задержке в почках + повышенная кислотность мочи в большинстве случаев приводит к развитию почечнокаменной болезни.

Все движения и превращения мочевой кислоты, обусловливающие ее поведение в целом, могут быть взаимосвязаны или существовать изолированно (как у кого пойдет).

Мочевая кислота и подагра

Рассуждая о пуринах, мочевой кислоте, диете, никак не получается обойти вниманием такую неприятную болезнь, как подагра . В большинстве случаев ее связывают с МК, к тому же редкой ее назвать трудно.

Подагра преимущественно развивается у лиц мужского пола зрелого возраста, иной раз имеет семейный характер. Повышенный уровень мочевой кислоты (гиперурикемия) в наблюдается задолго до появления симптомов заболевания.

Первый приступ подагры тоже яркостью клинической картины не отличается, всего-то – заболел большой палец какой-нибудь ноги, а дней через пять человек опять чувствует себя вполне здоровым и забывает об этом досадном недоразумении. Следующая атака может проявиться через большой промежуток времени и протекает более выраженно:

Лечить болезнь непросто, а иногда и не безобидно для организма в целом. Терапия, направленная на проявление патологических изменений включает:

  1. При остром приступе – колхицин, который снижает интенсивность болей, но склонен накапливаться в белых клетках крови, препятствовать их передвижению и фагоцитозу, а, следовательно, участию в воспалительном процессе. Колхицин угнетает кроветворение;
  2. Нестероидные противовоспалительные препараты – НПВП, обладающие обезболивающим и противовоспалительным эффектом, но негативно влияющие на органы пищеварительного тракта;
  3. Диакарб препятствует камнеобразованию (участвует в их растворении);
  4. Противоподагрические препараты пробенецид и сульфинпиразон способствуют усиленному выведению МК с мочой, но применяются с осторожностью при изменениях в мочевыводящих путях, параллельно назначают большое потребление жидкости, диакарб и отщелачивающие препараты. Аллопуринол снижает продукцию МК, способствует обратному развитию тофусов и исчезновению других симптомов подагры, поэтому, наверное, этот препарат один из лучших средств лечения подагры.

Эффективность лечения пациент может значительно повысить, если возьмется за диету, содержащую минимальное количество пуринов (только для нужд организма, а не для накопления).

Диета при гиперурикемии

Малокалорийная диета (лучше всего подходит стол №5, если у пациента все в порядке с весом), мясо и рыбка – без фанатизма, граммов 300 в недельку и не более. Это поможет больному снизить мочевую кислоту в крови, жить полноценной жизнью, не мучаясь приступами подагрического артрита. Пациентам с признаками этой болезни, имеющим лишний вес, рекомендуется использовать стол №8, не забывая разгружаться каждую неделю, но при этом помнить, что полное голодание запрещено. Отсутствие еды в самом начале диеты быстренько поднимет уровень МК и обострит процесс. А вот о дополнительном поступлении аскорбиновой кислоты и витаминов группы В следует подумать всерьез.

Все дни, пока будет длиться обострение заболевания, должны протекать без употребления мясных и рыбных блюд. Пища должна быть не твердой, впрочем, лучше вообще потреблять ее в жидком виде (молоко, фруктовые кисели и компоты, соки из фруктов и овощей, супы на овощном бульоне, каша-«размазня»). Кроме этого, пациент должен много пить (не меньше 2 литров в сутки).

Следует иметь в виду, что значительное количество пуриновых оснований имеется в таких деликатесах, как:

Напротив, минимальная концентрация пуринов отмечается в:

Это краткий список продуктов, которые запрещены или разрешены пациентам, обнаружившим первые признаки подагры и повышенную мочевую кислоту в анализе крови. Снизить мочевую кислоту в крови поможет вторая часть списка (молоко, овощи и фрукты).

Мочевая кислота понижена. Что это может значить?

Мочевая кислота в крови понижена, в первую очередь, при использовании противоподагрических средств, что абсолютно естественно, ведь они снижают синтез МК.

Кроме этого, причиной понижения уровня мочевой кислоты может стать уменьшение канальцевой реабсорбции, наследственно обусловленное снижение продукции МК и в редких случаях – гепатиты и анемия.

Между тем, пониженный уровень конечного продукта метаболизма пуринов (ровно, как и повышенный) в моче связан с более широким кругом патологических состояний, однако анализ мочи на содержание МК не такой уж и частый, он обычно интересует узких специалистов, занимающихся какой-то конкретной проблемой. Для самодиагностики пациентам он вряд ли может пригодиться.

Видео: мочевая кислота в суставах, мнение врача

Форма выведения белкового азота - в виде аммиака, мочевины или же мочевой кислоты - тесно связана с условиями жизни цветного и наличием воды (табл. 10.4). Аммиак весьма токсичен даже в очень малых концентрациях, поэтому он должен быстро

удаляться либо путем выведения во внешнюю среду, либо путем превращения в менее токсичные вещества (мочевину или мочевую кислоту).

У большинства водных беспозвоночных конечным продуктом белкового обмена является аммиак. Благодаря его легкой растворимости и небольшому молекулярному весу он диффундирует чрезвычайно быстро. Значительная его часть может быть выделена через любую поверхность, соприкасающуюся с водой, - не обязательно через почку. У костистых рыб большая часть азота выводится в форме аммиака через жабры. У карпа и золотой рыбки жабры выделяют в 6-10 раз больше азота, чем почки, и только 10% его составляет мочевина; остальные 90% выводятся в виде аммиака (Smith, 1929).

МОЧЕВИНА

Мочевина легко растворима в воде и обладает довольно малой токсичностью. Синтез мочевины у высших животных был изучен знаменитым биохимиком Гансом Кребсом - тем самым ученым, по имени которого был назван цикл окислительного энергетического обмена (цикл трикарбоновых кислот, или цикл Кребса),

При синтезе мочевины аммиак и двуокись углерода, конденсируясь с фосфатом, образуют карбамоилфосфат, который затем используется для синтеза цитруллина из орнитина, как показано на рис. 10.13. После этого добавляется еще одна молекула аммиака из аспарагиновой кислоты, и это ведет к образованию аминокислоты аргинина. В присутствии фермента аргиназы аргинин распадается на мочевину и орнитин. Из орнитина синтезируется новая молекула цитруллина, и весь цикл повторяется; поэтому весь этот путь превращений называют орнитиновым циклом синтеза мочевины. Наличие аргиназы у животного говорит о его способности вырабатывать мочевину и часто указывает на то, что мочевина является у него главным азотистым экскретом. Но это необязательно так, поскольку возможно наличие аргиназы и при: отсутствии всего цикла.

МОЧЕВИНА У ПОЗВОНОЧНЫХ

Позвоночные животные, выделяющие главным образом мочевину и обладающие для ее синтеза ферментами орнитинового цикла, представлены на рис. 10.14. Некоторое количество мочевины выделяют костистые рыбы, а у пластиножаберных, амфибий и млекопитающих это главный азотистый экскрет. У пластиножаберных (акул и скатов), а также у крабоядной лягушки и целаканта Latimeria мочевина задерживается в организме, играет

важную роль в саморегуляции и поэтому является ценным продуктом обмена. У пластиножаберных мочевина фильтруется в почечном клубочке, но ввиду ее значения для осморегуляции она не должна теряться с мочой; поэтому она возвращается в результате активной реабсорбции в канальцах. У амфибий дело обстоит иначе.

Мочевина фильтруется, и, кроме того, значительное количество ее добавляется к моче путем активной секреции в канальцах. Таким образом, и у пластиножаберных, и у амфибий имеет место активный канальцевый транспорт мочевины, но он идет у этих групп в разных направлениях. Очевидно, насосные механизмы здесь метаболически не идентичны, поскольку опыты с рядом близких друг к другу производных мочевины дают в обеих группаx животных различные результаты (табл. 10.5). Это превосходный пример того, как одна и та же физиологическая функция возникает в двух группах независимо, причем для достижения одной и той же цели (в данном случае для активного транспорта мочевины) не обязательно используются одинаковые механизмы.

У крабоядной лягушки, которая тоже сохраняет мочевину для осморегуляции, активной реабсорбции этого вещества в канальцах

не обнаружено (Schmidt-Nielsen, Lee, 1962). Моча образуется у нее медленно, и почечные канальцы весьма проницаемы для мочевины. Поэтому мочевина диффундирует из канальцевой жидкости


Рис. 10.14. Выделение азота на разных этапах филогенеза позвоночных. Линиям" окружены группы животных, которые выделяют соответственно аммиак, мочевину и мочевую кислоту в качестве основного экскрета. (В. Schmidt-Nielsen, 3972.)

обратно в кровь и оказывается в моче приблизительно в той же концентрации, что и в крови. Таким образом, лишь небольшие количества ее теряются с мочой.

Если у обычных лягушек происходит активная канальцевая секреция мочевины, то почему крабоядная лягушка не использует

Таблица 10.5

Мочевина активно транспортируется почечным канальцем акулы (активная реабсорбция) и лягушки (активная секреция). Но с тремя другими близкими веществами результаты получаются у этих двух видов животных совершенно различными. Это говорит о том, что клеточный механизм транспорта в их почках различен. (В. Schmidt-Nielsen, Rabinovitz, 1964)

такой насос, попросту поменяв его направление на обратное? На этот вопрос ответить нелегко, но, по-видимому, направление активного транспорта - консервативная физиологическая функция, изменить которую непросто. Как мы уже видели, и в коже лягушки, и в почке млекопитающего сохраняется направление активного транспорта хлористого натрия извне внутрь организма. Но в почке млекопитающего направленный внутрь обратный транспорт NaCl из канальцевой жидкости в организм используется в умножающей противоточной системе таким образом, что конечным результатом тем не менее оказывается концентрированная моча.

Обычное представление о выделении мочевины почкой млекопитающего состоит в том, что мочевина фильтруется в клубочке, а затем пассивно проходит по канальцам, хотя некоторая ее доля благодаря высокой способности к диффузии пассивно диффундирует обратно в кровь. Имеются, однако; убедительные доказательства того, что мочевина служит важным элементом умножающей противоточной системы и что способ выделения мочевины является существенным элементом функции почки у млекопитающих.

МОЧЕВИНА И МЕТАМОРФОЗ У АМФИБИЙ

Головастики лягушек и жаб выделяют главным образом аммиак; взрослые животные выделяют мочевину. У лягушки (Rana temporaria), жабы (Bufo bufo), тритона (Triturus uulgaris) и других амфибий при метаморфозе происходит четкий переход от выделения аммиака к экскреции мочевины. Однако южноафриканская шпорцевая лягушка (Xenopus), которая и во взрослом состоянии остается в воде, продолжает выделять аммиак и на этой: :тадии (табл. 10.6).

Переход к выделению мочевины во время метаморфоза у полуназемных амфибий связан; с заметным повышением активности всех ферментов орнитинового цикла в печени (Brown et al., 1959).

Таблица 10.6

Выделение аммиака у наземной жабы Bufo bufo и у полностью водной бесхвостой амфибии Xenopus laevis. Цифры указывают выделение свободного аммиака в процентах от общего количества выделяемых аммиака и мочевины на разных стадиях развития. (Munro, 1953 )


Интересно, что особи водной амфибии Xenopus, извлеченные:на несколько недель из воды, накапливают в крови и тканях мочевину. Накопление мочевины можно вызвать, поместив животных в 0,9%-ный раствор NaCl. Когда взрослых особей содержали вне воды, но в сыром мху (чтобы избежать обезвоживания), концентрация мочевины в крови увеличивалась в 10-.20 раз и достигала почти 100 ммоль/л. После возвращения животных в воду избыточная мочевина выделялась (Balinsky et al, 1961).

У группы особей Xenopus, которые в естественных условиях переживали летнюю засуху в иле около высохшего пруда, концентрация мочевины также была повышена в 15-20 раз. Среди ферментов, участвующих в синтезе мочевины, количество карбамоилфосфатсинтетазы, ответственной за первый этап синтеза (см. рис. 10.13), возросло приблизительно в шесть раз, но активность остальных ферментов цикла не изменилась. Возможно, что синтез карбамоилфосфата является этапом, лимитирующим скорость синтеза мочевины, и увеличение количества этого фермента, вероятно, удерживает аммиак плазмы на низком уровне, когда животные находятся вне воды (Balinsky et al., 1967).

МОЧЕВИНА У ДВОЯКОДЫШАЩИХ РЫБ

У африканской двоякодышащей рыбы Protopterus происходят совершенно такие же изменения, как у амфибий. В обычных условиях, когда такая рыба живет в воде, она выделяет много аммиака

(и некоторое количество мочевины), но когда в период засухи она находится в коконе в засохшем иле, то все азотистые отходы превращаются у нее в мочевину, которая накапливается в крови, где ее концентрация к концу трехлетнего пребывания рыбы в коконе может достигать 3% (500 ммоль/л) (Smith, 1959).

В печени африканской двоякодышащей рыбы обнаружены все пять ферментов орнитинового цикла (Janssens, Cohen, 1966). Уровни двух ферментов, лимитирующих скорость синтеза мочевины, сходны у этой рыбы и у головастика лягушки Rana catesbeiaпа и значительно ниже уровней, найденных у взрослых лягушек. Это согласуется с фактом преимущественного выделения аммиака двоякодышащей рыбой, когда она находится в воде. Однако было вычислено, что того количества ферментов орнитинового цикла, которое содержится в печени двоякодышащей рыбы, не находящейся в спячке, достаточно, чтобы обеспечить накопление мочевины, фактически наблюдаемое во время спячки (Forster, Goldstein, 1966).

У австралийской двоякодышащей рыбы Neoceratodus концентрации ферментов орнитинового цикла невелики, что согласуется с образом жизни этой рыбы: она пользуется легким только как: добавочным органом дыхания и может лишь недолго выживать на воздухе (о дыхании двоякодышащих рыб см. гл. 2). Синтез мочевины в срезах печени австралийской двоякодышащей рыбы идет в сто раз медленнее, чем у африканской. Это опять-таки согласуется с чисто водным образом жизни первой из них (Goldstein et al., 1967).

МОЧЕВАЯ КИСЛОТА

Выделение мочевой кислоты преобладает у насекомых, наземных улиток, большинства рептилий и у птиц. Все это - типично наземные животные, и образование у них мочевой кислоты можно рассматривать как эффективное приспособление, сберегающее воду при жизни на суше. Поскольку мочевая кислота и ее соли очень плохо растворимы в воде (растворимость ее составляет около 6 мг на 1 л воды), реабсорбция воды из мочи ведет к выпадению мочевой кислоты и ее солей в осадок.

МОЧЕВАЯ КИСЛОТА У ПТИЦ И НАСЕКОМЫХ

Полутвердая белая часть птичьего помета представляет собой мочу и состоит главным образом из мочевой кислоты; для выведения азотистых экскретов птицы расходуют очень мало воды, некоторых насекомых уменьшение потерь воды с мочой зашло так далеко, что они вообще не выделяют мочевую кислоту, а откладывают ее в разных частях организма, главным образом в

жировом теле. Поэтому для удаления конечных азотистых продуктов таким формам вода совсем не нужна (Kilby, 1963).

Было высказано предположение, что использование мочевой кислоты в качестве главного экскрета дает птицам еще одно преимущество. Поскольку для образования мочи им нужно мало воды, выделение мочевой кислоты, согласно этому предположению, уменьшает вес тела у летающих птиц. Но это соображение не убедительно, так как птицы, имеющие доступ к воде (как пресноводные, так и морские), часто выделяют большие количества жидкой мочи.

КЛЕЙДОИЧЕСКОЕ ЯЙЦО

Джозеф Нидхем предположил, что разница между теми позвоночными, которые вырабатывают мочевину (млекопитающие и амфибии), и теми, которые продуцируют мочевую кислоту (рептилии и птицы), связана прежде всего со способом размножения. Яйцо амфибии развивается в воде, а эмбрион млекопитающего - в жидкой среде в матке, где отходы метаболизма попадают в кровь матери. С другой стороны, эмбриональное развитие рептилий и птиц происходит в замкнутом, так называемом клейдоическом яйце, которое обменивается с внешней средой только газами, а все экскреты остаются внутри скорлупы. В клейдоическом яйце запас воды очень невелик, а аммиак, разумеется, слишком токсичен, чтобы эмбрион мог выносить его присутствие в больших количествах. Если бы вырабатывалась мочевина, она оставалась бы в яйце и накапливалась в растворенном состоянии. Между тем мочевая кислота может выпадать в осадок и тем самым по существу элиминироваться; это и происходит, когда она откладывается в виде кристаллов в аллантоисе, который, таким образом, служит эмбриональным мочевым пузырем.

МОЧЕВАЯ КИСЛОТА У РЕПТИЛИЙ

Ящерицы и змеи выделяют главным образом мочевую кислоту; многие черепахи выделяют смесь мочевой кислоты и мочевины, а крокодилы - главным образом аммиак (Cragg et al., 1961). Это соответствует общему представлению, что способ экскреции азота тесно связан с количеством доступной воды в окружающей среде.

Крокодилы и аллигаторы выделяют аммиак в моче, где главным катионом является NH4+, а главным анионом - НСО 3 - (Со-ulson et al., 1950; Goulson, Hernandez, 1955). Возможно, что присутствие в моче указанных ионов помогает этим пресноводным

животным лучше удерживать ионы Na + и С1 - , потеря которых с калом, кстати, тоже очень невелика.

Вряд ли можно сомневаться в тесной связи между средой обитания черепах и выделением ими азота. В табл. 10.7 приведен состав проб мочи от восьми видов черепах, полученных из Лондонского зоопарка. У видов с наиболее выраженным водным образом жизни выделяются значительные количества аммиака и мочевины и только следы мочевой кислоты; у наиболее сухопутных форм больше половины азота выводится в виде мочевой кислоты.

Таблица 10.7

Доля азота в моче различных черепах (в процентах от всего выделяемого азота). Формы, в наибольшей степени связанные с водой, почти не выделяют мочевой кислоты, но это вещество доминирует у наземных видов из засушливых областей. Moyle, 1949 )


Сведения о том, выделяют ли черепахи главным образом мочевину или же мочевую кислоту, противоречивы. Дело в том, что различаются не только виды, но и внутри одного вида одни особи могут выделять преимущественно мочевую кислоту, другие - преимущественно мочевину, третьи - смесь обоих веществ Khalil, Haggag, 1955). Даже одна и та же особь может с течением времени перейти от одного соединения к другому. Некоторое

количество выпавшей в осадок мочевой кислоты задерживается в клоаке, а жидкая часть мочи выводится наружу; это делает ненадежным определение образующейся мочевой кислоты путем анализа одной или нескольких проб мочи: при неполном опорожнении клоаки могут получиться совсем низкие цифры, а при такой ее эвакуации, когда выходит осадок, накопившийся за некоторое время, мочевой кислоты окажется слишком много.

У черепахи Testudo mauritanica переход от мочевины к мочевой кислоте и обратно находится, по-видимому, в прямой зависимости от температуры и содержания воды в организме. Выделение мочевой кислоты возрастает при неблагоприятном водном балансе, но механизм, управляющий этим сдвигом биохимической активности, неясен.

В главе 9 мы уже упоминали, что африканская лягушка Chiromantis xerampelina теряет воду через кожу очень медленно, примерно с той же скоростью, что и рептилии. Она сходна с рептилиями и тем, что выделяет в основном мочевую кислоту, а не мочевину, как это обычно свойственно взрослым амфибиям. Эта сенсационный факт, так как он противоречит общепринятому представлению о выделении азота у амфибий. Точность этого сообщения не вызывает сомнений, так как мочевую кислоту определяли в моче Chiromantis специфичным для этого вещества ферментативным методом, и было установлено, что она составляет до 60-75% сухого веса мочи (Loveridge, 1970).

Южноафриканская лягушка Phyllotnedusa sauvagii в этом отношении тоже сходна с рептилиями. Потеря воды через кожу составляет у нее величину того же порядка, что и у рептилий с их сухими покровами, а моча содержит много полутвердого осадка урата (Shoemaker et al., 1972). В форме урата у Phyllomedusa выделяется 80% общего азота, и повышенное потребление воды не изменяет интенсивности образования урата. Этот вид продолжает выделять главным образом мочевую кислоту даже при избытке воды. Когда лягушка нуждается в сохранении воды, экскреция мочевой кислоты (вместо мочевины) приобретает очень большое значение. Вычислено, что если бы экскреторным продуктом у этой лягушки была мочевина, то для образования мочи ей потребовалось бы около 60 мл воды в день на 1 кг веса тела. А между тем, благодаря тому что P. sauvagii выделяет мочевую кислоту, она теряет с мочой всего лишь 3,8 мл воды в день на 1 кг веса тела (Shoemaker, McClanahan, 1975).

АММИАК И ПОЧЕЧНАЯ ФУНКЦИЯ

Из всего сказанного выше может создаться впечатление, что аммиак выделяют главным образом водные животные, но это не совсем верно. Аммиак в норме содержится и в моче наземных животных, где он служит для регуляции рН мочи. Если моча становится кислой из-за выделения кислых продуктов обмена, для нейтрализации добавляется аммиак.

Избыток кислоты обычно образуется при белковом обмене, так как конечным продуктом окисления серусодержащей аминокислоты цистеина является серная кислота. Чем кислее моча, тем больше добавляется аммиака. Аммиак, используемый для нейтрализации кислой мочи, образуется в почках из аминокислоты глутамина. Почки содержат глутаминазу, и она имеется здесь специально для выработки аммиака. Поэтому аммиак в моче млекопитающего прямо не связан с тем аммиаком, который образуется в печени при дезаминировании аминокислот, и в этом смысле его не следует рассматривать как нормальный конечный продукт белкового обмена.

НУКЛЕИНОВЫЕ КИСЛОТЫ И ВЫДЕЛЕНИЕ АЗОТА

Нуклеиновые кислоты содержат две группы азотистых соединений: пурины (аденин и гуанин) и пиримидины (цитозин и тимин). У некоторых животных пурины выделяются в виде мочевой кислоты (которая и сама является пурином); у других животных пуриновая структура расщепляется до ряда промежуточных соединений или до аммиака, причем любое из этих веществ может выводиться из организма.

Метаболическое расщепление пуринов и выделение его конечных продуктов изучены не так тщательно, как обмен белкового 13ота. Важнейшие данные приведены в табл. 10.8. У птиц, наземных рептилий и насекомых пурины расщепляются до мочевой кислоты и последняя выводится из организма. Это те животные, у которых из аминного азота синтезируется мочевая кислота; очевидно, что для животного было бы бессмысленно синтезировать мочевую кислоту и в то же время обладать механизмами ее разложения. Поэтому нельзя ожидать дальнейшего распада пуринов у тех животных, у которых мочевая кислота - конечный продукт белкового обмена.

Среди млекопитающих человек, высшие обезьяны и далматский дог составляют особую группу: они выделяют мочевую кислоту, тогда как остальные млекопитающие выделяют аллантоин. Аллантоин образуется из мочевой кислоты путем одного превращения в присутствии фермента уриказы. У человека и высших обезьян нет этого фермента. Из-за своей малой растворимости мочевая кислота иногда откладывается в организме человека, вызывая припухлость суставов и очень мучительное заболевание -

Таблица 10.8

Азотистые конечные продукты пуринового обмена у разных животных. (Keilin, 1959)


подагру. Если бы у человека сохранился фермент уриказа, подагры не существовало бы.

Хотя далматский дог выделяет гораздо больше мочевой кислоты, чем другие собаки, это не следствие какого-то дефекта метаболизма. Печень всякой собаки содержит уриказу и вырабатывает некоторое количество аллантоина. Но у далматского дога имеется почечный дефект, препятствующий канальцевой реабсорбции мочевой кислоты (которая происходит у других млекопитающих, в том числе у человека); поэтому у дога мочевая кислота теряется с мочой быстрее, чем перерабатывается печенью в аллантоин (Yu et al., I960). Немало данных говорит о том, что мочевая кислота у далматского дога не только фильтруется в клубочке, но и экскретируется путем активного транспорта в канальцах (Keilin, 1959).

Пурины аденин и гуанин сходны по своей структуре с мочевой кислотой: они содержат одно шестичленное кольцо и одно пятичленное. Но пиримидины (цитозин и тимин) представляют собой одиночные шестичленные кольца, содержащие два атома азота. У высших позвоночных пиримидины расщепляются путем разрыва этого кольца с образованием одной молекулы аммиака и одной молекулы β-аминокислоты. Последняя метаболизируется затем по обычной схеме дезаминирования.

Самая поразительная черта обмена нуклеиновых кислот состоит в том, что "высшие" животные, перечисленные в начале табл. 10.8, полностью лишены ферментов, нужных для расщепления

пуринов. Среди "низших" животных мы находим все большее усложнение биохимических и ферментных систем, осуществляющих дальнейшее расщепление пуринов, так что самые "низшие" формы обладают наиболее полным ферментным аппаратом.

ДРУГИЕ АЗОТИСТЫЕ СОЕДИНЕНИЯ

У пауков главным экскретом является гуанин. По-видимому, он синтезируется из аминного азота, хотя весь путь его образования неизвестен. Некоторые пауки, в том числе птицеядные тарантулы, после приема пищи выделяют более 90% всего азота в форме гуанина (Peschen, 1939). У обыкновенного садового паука Epeira diadema идентификация гуанина была подтверждена весьма специфическим ферментативным методом (Vajropala, 1935).

Гуанин довольно часто встречается и у разнообразных других животных. Например, серебристый блеск рыбьей чешуи обусловлен отложением кристаллов гуанина. Садовая улитка Helix выделяет гуанин, но лишь в пределах около 20% общего количества экскретируемых пуринов, а остальные 80% составляет мочевая кислота. Возможно, что эта фракция - продукт обмена нуклеиновых кислот, а мочевая кислота образуется в результате белкового обмена.

Аминокислоты не занимают важного места среди продуктов азотистого обмена, но в небольших количествах они содержатся в моче многих животных. Казалось бы, животному выгоднее дезаминировать аминокислоту, выделять аммиак обычным путем и использовать образующуюся органическую кислоту в энергетическом обмене. Но поскольку аминокислоты играют лишь незначительную роль в выделении азота, этот вопрос не будет здесь обсуждаться.

ТЕОРИЯ РЕКАПИТУЛЯЦИИ

Обычно считали, что выделение азота у развивающегося куриного эмбриона изменяется во времени и проходит через ряд пиков: вначале основным продуктом является аммиак, затем мочевина и, наконец, мочевая кислота. Предполагалось, что такое развитие рекапитулирует этапы эволюции, которая у птиц заканчивается выделением мочевой кислоты. Как сообщалось, образование аммиака у куриного зародыша достигает максимума через 4 дня, мочевины - через 9 дней и мочевой кислоты - через 11 дней после начала инкубации (Baldwin, 1949).

Более новые работы говорят о том, что выделение азота у куриного эмбриона резко отличается от этой ранее описанной картины (Clark, Fischer, 1957). Все три главных экскреторных продукта- аммиак, мочевина и мочевая кислота - образуются и присутствуют с самого начала эмбрионального развития. К концу

периода инкубации мочевой кислоты становится намного больше, чем остальных двух продуктов. Однако количество мочевины и аммиака продолжает расти на протяжении всей инкубации, и ко времени вылупления оба вещества содержатся примерно в одинаковых количествах. К концу инкубации количество выделяемого азота достигает 40 мг, из которых 23% делятся поровну между мочевиной и аммиаком, а остальное представлено мочевой кислотой (рис. 10.15).

В чем причина расхождения в полученных результатах? Прежние данные могли быть менее точными из-за более примитивных методов анализа, но этим вряд ли можно объяснить наблюдавшиеся отдельные пики. Главная причина состоит просто в том, что результаты выражались в количествах каждого экскреторного продукта на единицу веса зародыша. А поскольку зародыш непрерывно и чем дальше, тем быстрее увеличивается в размерах,

то при делении количества каждого вещества на вес эмбриона создается искусственный пик.

На самом деле все три экскреторных продукта присутствуют с самого начала и на протяжении эмбрионального развития их становится постепенно все больше, но после 10-го дня инкубации количество аммиака возрастает незначительно. Мочевина, вырабатываемая зародышем, синтезируется не из азота аминокислот в цикле орнитина, а в результате воздействия аргиназы на аргинин (Eakin, Fisher, 1958). Таким образом, ни образование аммиака, ни синтез мочевины в курином эмбрионе не подтверждают представление о том, что онтогенез биохимических механизмов повторяет эволюционную историю выделения азота.

Мы рассмотрели разнообразные органы выделения и описали их общие особенности. Эти органы удаляют отходы метаболизма, помогают поддерживать нужные концентрации солей и других растворенных веществ и регулируют содержание воды в организме, тщательно сохраняя воду, если ее в организме мало, и выводя ее избыточные количества.

Убедительные данные показывают, однако, что это не всегда верно, Некоторые исследователи (например, Costa et al., 1968, 1974) сообщают об образовании газообразного азота у млекопитающих, получающих большие количества белка. Эти сведения должны изменить некоторые из наших представлений о белковом обмене и конечных азотистых продуктах.

По-гречески kleisto - замкнутый, от kleis - ключ.

Два описанных здесь вида лягушек обитают в сухих, полупустынных местностях. - Прим. ред.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: