Про заболевания ЖКТ

Решение задач физики или механики с помощью дифференциальных уравнений распадается в соответствии со сказанным в п. 1 на следующие этапы:

а) составление дифференциального уравнения;

б) решение этого уравнения;

в) исследование полученного решения.

1. Установить величины, изменяющиеся в данном явлении, и выявить физические законы, связывающие их.

2. Выбрать независимую переменную и функцию этой переменной, которую мы хотим найти.

3. Исходя из условий задачи, определить начальные или краевые условия.

4. Выразить все фигурирующие в условии задачи величины

через независимую переменную, искомую функцию и ее производные.

5. Исходя из условий задачи и физического закона, которому подчиняется данное явление, составить дифференциальное уравнение.

6. Найти общее решение или общий интеграл дифференциального уравнения.

7. По начальным или краевым условиям найти частное решение.

8. Исследовать полученное решение.

Во многих случаях составление дифференциального уравнения первого порядка основывается на так называемой «линейности процесса в малом», т. е. на дифференцируемости функций, выражающих зависимость величин. Как правило, можно считать, что все участвующие в том или ином процессе величины в течение малого промежутка времени изменяются с постоянной скоростью. Это позволяет применить известные из физики законы, описывающие равномерно протекающие явления, для составления соотношения между значениями , т. е. величинами, участвующими в процессе, и их приращениями. Получающееся равенство имеет лишь приближенный характер, поскольку величины меняются даже за короткий промежуток времени, вообще говоря, неравномерно. Но если разделить обе части получившегося равенства на и перейти к пределу, когда стремится к нулю, получится точное равенство. Оно содержит время t, меняющиеся с течением времени физические величины и их производные, т. е. является дифференциальным уравнением, описывающим данное явление. То же самое уравнение в дифференциальной форме можно получить, заменив приращение на дифференциал , а приращение функций - соответствующими дифференциалами.

Таким образом, при составлении дифференциального уравнения мы делаем как бы «мгновенный снимок» процесса

в данный момент времени, а при решении уравнения по этим мгновенным снимкам восстанавливаем течение процесса. Итак, в основе решения физических задач с помощью дифференциальных уравнений лежит общая идея линеаризации - замены функций на малых промежутках изменения аргумента линейными функциями. И хотя встречаются процессы (например, броуновское движение), для которых линеаризация невозможна, потому что не существует скорости изменения некоторых величин в данный момент времени, в подавляющем большинстве случаев метод дифференциальных уравнений действует безотказно.

Пример 1. В дне цилиндрического сосуда, наполненного водой и имеющего высоту Н и радиус основания R, сделано небольшое отверстие площади 5 (рис. 2). За какой промежуток времени через отверстие вытечет вся вода, если треть воды вытекает за ?

Решение. Если бы истечение воды происходило равномерно, то решить задачу не представляло бы никаких затруднений - вся вода вытечет за 3 с. Но наблюдения показывают, что сначала вода вытекает быстро, а по мере снижения уровня воды в сосуде скорость ее истечения уменьшается. Поэтому надо учесть зависимость между скоростью истечения v и высотой h столба жидкости над отверстием. Проведенные итальянским физиком Торричелли эксперименты показали, что скорость v приближенно выражается формулой , где g - ускорение свободного падения и k - «безразмерный» коэффициент, зависящий от вязкости жидкости и формы отверстия (например, для воды в случае круглого отверстия .

Сделаем «мгновенный снимок» процесса истечения за промежуток времени Пусть в начале этого промежутка высота жидкости над отверстием равнялась , а в конце его она понизилась и стала , где - «приращение» высоты (которое, очевидно, отрицательно). Тогда объем жидкости, вытекшей из сосуда, равен объему цилиндра с высотой и площадью основания т. е. .

Эта жидкость вылилась в виде цилиндрической струйки, имеющей площадь основания S. Ее высота равна пути, пройденному вытекающей из сосуда жидкостью за промежуток времени . В начале этого промежутка времени скорость истечения равнялась по закону Торричелли а в конце его она равнялась .

Если весьма мало, то тоже очень мало и потому полученные выражения для скорости почти одинаковы. Поэтому путь, пройденный жидкостью за промежуток времени выражается формулой

где . Значит, объем вылившейся за промежуток времени жидкости вычисляется по формуле

Мы получили два выражения для объема жидкости, вылившейся из сосуда за промежуток времени Приравнивая эти выражения, получаем уравнение

Недостатком уравнения (1) является то, что нам неизвестно выражение для а. Чтобы устранить этот недостаток, разделим обе части уравнения (1) на и перейдем к пределу при Поскольку , получаем дифференциальное уравнение

Физики обычно рассуждают короче. Они исследуют процесс в течение «бесконечно малого промежутка времени и считают, что за промежуток времени не изменяется скорость истечения жидкости из сосуда. Поэтому вместо приближенного уравнения (1) они получают точное уравнение

которое является не чем иным, как дифференциальной формой уравнения (2).

Чтобы решить получившееся уравнение, разделим переменные и обозначим для краткости дробь через А. Интегрируя обе части получившегося уравнения получим ответ в виде

Мы получили зависимость между t и , в которую входят две постоянные А и С. Постоянная А зависит от размеров и формы отверстия, вязкости жидкости и других

физических параметров, а постоянная С возникла в ходе решения задачи. Их значения нам неизвестны, но их можно найти, учитывая не использованные еще условия задачи.

Сначала найдем значение С. Для этого используем начальные условия. По условию задачи в начале истечения сосуд был наполнен, т. е. высота столба жидкости равнялась . Иными словами, при имеем: . Подставляя в формулу (3) значения получаем: и потому Поэтому равенство (3) можно переписать в виде

Чтобы найти значение А, вспомним, что за первые мин вытекла треть всей жидкости. Этому соответствует понижение уровня жидкости на . Иными словами, при имеем: . Отсюда находим, что

Теперь уже легко найти время опорожнения сосуда: нам надо найти такое значение t, при котором :

Полученное значение раз больше значения , которое получилось в предположении, что жидкость вытекает равномерно.

Разумеется, и это решение не является безукоризненно точным - мы пренебрегли, например, явлениями

капиллярности (а они существенны, если диаметр отверстия мал), завихрениями жидкости, так называемым пограничным слоем (слоем жидкости вблизи стенок отверстия, на котором происходит переход значений скорости от нуля до и) и многими иными факторами. Но все же оно точнее, чем решение, основанное на предположении о равномерности истечения жидкости.

Исследуем в заключение полученное решение. Для этого подставим в равенство (4) значение , найдем и получим, что

Ясно, что, чем больше значения R и Н (размеры сосуда), тем дольше будет вытекать из него жидкость, как это и следует из полученного ответа. Далее, чем больше S, т. е. площадь отверстия, тем быстрее вытечет жидкость из сосуда. В том же направлении действует и увеличение ускорения g, а также коэффициента к (чем больше к, тем больше скорость истечения жидкости по формуле Бернулли).

Таким образом, полученная формула выдержала «испытание на здравый смысл». Ее надо еще испытать на размерность. Заметим, что в формуле Бернулли коэффициент k безразмерен и потому имеем:

Проведенный контроль подтверждает, что задача решена правильно.

Во многих случаях составление дифференциального уравнения по условию задачи облегчается тем, что соответствующий закон физики связывает между собой значения некоторой величины и скорости ее изменения либо связывает друг с другом значения величины, скорости ее изменения и ускорения.

Пример 2. Парашютист падает под действием силы тяжести. Найдем закон изменения высоты парашютиста над уровнем земной поверхности, если сопротивление воздуха пропорционально скорости его падения, а в начале падения он находился на высоте Я, причем был в состоянии покоя.

Решение. По второму закону Ньютона имеем: . Если выбрать направление координатной оси так, как показано на рисунке 3, то (сила тяжести направлена в отрицательном направлении, а сила сопротивления воздуха направлена в сторону, противоположную скорости падения). Поэтому равенство принимает вид: Так как ускорение является производной от скорости , то получаем дифференциальное уравнение , т. е.

Начальное условие имеет вид: (начальная скорость падения равна нулю).

Разделяя переменные в уравнении (5) и интегрируя, получим:

Так как при имеем: , то и потому

Отсюда находим:

Мы получили закон изменения скорости с течением времени. Найдем теперь закон изменения высоты А парашютиста. Для этого заметим, что , и потому получаем дифференциальное уравнение

Из него вытекает, что

По условию при имеем: . Подставляя эти значения в (8), получаем, что и потому

При малых значениях t имеем:

Сохраняя лишь первые два слагаемых, получаем из формулы (7), что Это показывает, что в начале падения парашютист движется почти равноускоренно. Однако в дальнейшем влияние сопротивления воздуха становится ощутимым, и при имеем: потому стремится к . Иными словами, движение становится почти равномерным со скоростью направленной вниз. Эта скорость пропорциональна силе тяжести действующей на парашютиста, и обратно пропорциональна

коэффициенту k, показывающему силу сопротивления воздуха.

Из формулы (9) можно приближенно найти время, за которое парашютист упадет на земную поверхность. Для этого учтем, что и напишем по формуле (9) приближенное равенство Из него находим, что Заметим, что слагаемое равно времени, которое заняло бы падение парашютиста, с постоянной скоростью а добавка - произошла потому, что вначале падение было более медленным.

Рассмотрим конкретный пример.

Скорость распада радия пропорциональна его имеющемуся количеству R . Найти закон распада радия, если известно, что через 1600 лет останется половина первоначального количества. Какой процент радия окажется распавшимся через 100 лет?

Решение . Пусть R - количество радия в момент времени t , а R 0 - его первоначальное количество. Тогда скорость распада радия равна и является отрицательной величиной, т.к. R с течением времени убывает. Согласно условию задачи имеем: , где k >0 - коэффициент пропорциональности, подлежащий определению. Интегрируем полученное уравнение:

Осталось найти k и C . Для определения произвольной постоянной С воспользуемся начальным условием: R=R 0 в начальный момент времени t =0. Тогда R 0 =С . Итак, закон распада радия имеет вид

Для нахождения k воспользуемся следующим условием: при t=1600. Отсюда

Таким образом, окончательно получаем

При t=100 имеем

Следовательно, через 100 лет распадается 4,2% первоначального запаса радия.

Решить задачи.

6.26. Тело за 10 мин охлаждается от 100 до 60°С . Температура окружающего воздуха равна 20°С . Считая скорость остывания тела пропорциональной разности температур тела и окружающего его воздуха, определить, за какое время тело остынет до 30°С . Указание . Пусть Т - температура тела в момент времени t . Тогда дифференциальный закон охлаждения тела имеет вид

.

6.27. Моторная лодка движется в спокойной воде со скоростью 1,5 м/с. Через 4с после выключения мотора ее скорость уменьшилась до 1 м/с. Считая, что сопротивление воды пропорционально скорости движения лодки, найти ее скорость через 50с после остановки мотора. Указание . Пусть V - скорость лодки после выключения мотора в момент времени t . Тогда зависимость между V и t имеет вид , где m- масса лодки.

6.28. Поглощение светового потока тонким слоем воды пропорционально толщине слоя и потоку, падающему на его поверхность. При прохождении через слой толщиной 2м поглощается 1/3 первоначального светового потока. Определить, какой процент первоначального светового потока дойдет до глубины 4м. Указание . Пусть Q - световой поток, падающий на поверхность на глубине h . Тогда dQ = - kQdh .

6.29. Скорость тела V , брошенного вниз с начальной скоростью V 0, определяется равенством V =V 0 +gt . Найти уравнение движения данного тела.

6.30. Скорость размножения некоторых бактерий пропорциональна начальному количеству бактерий. Найти зависимость изменения количества бактерий от времени.

6.31. Найти закон роста клеток с течением времени, если для пальчиковых клеток скорость роста пропорциональна длине клетки l в данный момент. Указание . Пусть , где a,b- постоянные, характеризующие процессы синтеза и распада.

6.32. По какому закону происходит разрушение клеток в звуковом поле, если скорость их разрушения пропорциональна начальному количеству N .

6.33. Скорость укорочения мышц описывается уравнением , где х 0 - полное укорочение, х - укорочение в заданный момент. Найти закон сокращения мышц, если при t =0 величина укорочения была равна нулю.

Конец работы -

Эта тема принадлежит разделу:

По высшей математике

Высшего профессионального образования.. пермская государственная медицинская академия.. имени академика е а вагнера..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Дифференциальные уравнения
§1.Основные понятия. Уравнение, связывающее независимую переменную, неизвестную функцию и ее производные или дифференциалы различных порядков, называется дифференциальн

Однородные дифференциальные уравнения
Уравнения вида называется однородным уравнением. Однородное уравнение приводится к уравнению с раздел

Вероятность случайного события – это количественная оценка объективной возможности появления данного события
В математической статистике вероятностью случайного события называют предел, к которому стремится относительная частота события

Случайных величин
Обычно для описания распределения случайной величины бывает достаточно определить несколько числовых характеристик (параметров). Наиболее распространенные из них: математическое ожидание (среднее з

Оценка параметров генеральной совокупности по ее выборке
Генеральной совокупностью случайной величины называют совокупность всех значений данной величины, которая подлежит изучению. Однако в реальных условиях эксперимента невозможно изучить всю со

Интервальная оценка. Интервальная оценка
при малой выборке. Распределение Стьюдента Точечная оценка, особенно при малой выборке, может значительно отличаться от истинных параметров генеральной совокупност

Проверка гипотез. Критерии значимости
Очень часто перед исследователем встает задача, выяснить, являются ли различия между средними арифметическими двух выборок

Характер взаимосвязи между признаками
Все многообразие связей между отдельными признаками, свойствами явлений или параметрами функционирующего объекта можно разделить на две основные группы: функциональные и статистические. За

С помощью коэффициента парной корреляции
Допустим, проводится независимое измерение различных параметров у одного типа объектов. Из этих данных можно получить качественно новую информацию – о взаимосвязи этих параметров. Например

Элементы регрессионного анализа
После того, как установлено наличие корреляционной связи между двумя изучаемыми признаками (явлениями), можно попытаться установить закономерность зависимости одного признака

Статистическая обработка данных измерения роста
В работе статистически обрабатываются данные измерения роста определенной группы населения. Необходимо построить гистограмму, вычислить среднее арифметическое

Правила округления
Хотя правила округления считаются известными, следует напомнить, что: 1. Если первая отбрасываемая цифра больше пяти, то последняя сохраняемая цифра увеличивается на единицу, если отбрасыв

Вычисления с приближенными числами
Точность результата математических операций с приближенными числами определяется количеством значащих цифр в этих числах. Значащими цифрами числа называется число надежно установленных циф

Медицинских вузов
Авторы- составители: Кирко Г.Е., Кустова Я.Р., Афанасьев А.Л., Корякина А.Г., Смирнова З.А., Зернина Н.В., Сазонова Н.К., Черемных М.Р. Редактор Н

Уравнения с разделяющимися переменными

Понятие дифференциального уравнения

Уравнение, содержащее независимую переменную х, искомую функцию у=f (x), а также ее производные у", у"", и т.д. называется обыкновенным дифференциальным уравнением. Общий вид дифференциального уравнения:

F (x, y, y", y"",…, y (n)) = 0,(29)

Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в это уравнение.

Например, у"+ху-5=0 – уравнение первого порядка, у""+6у"+х=0 – уравнение второго порядка.

Общий вид уравнения первого порядка:

F (x, y, y") = 0 , (30)

Общим решением дифференциального уравнения называется функция, удовлетворяющая двум условиям: во-первых, эта функция должна удовлетворять данному дифференциальному уравнению, т.е. при подстановке в уравнение должна обращать его в тождество; во-вторых, количество произвольных постоянных в этой функции должно быть равным порядку данного уравнения.

Общее решение дифференциального уравнения n- го порядка имеет вид:

у = f (x, C 1 , C 2, ….,C n) , (31)

а общее решение дифференциального уравнения I порядка

у = f (x, C) , (32)

Из общего решения путем вычисления постоянных интегрирования, исходя из заданных дополнительных условий, можно найти частные решения данного уравнения.

Дифференциальными уравнениями описывают различные процессы в физике, химии, биологии, фармации.

Из уравнений первого порядка рассмотрим уравнения с разделяющимися переменными .

Уравнение с разделяющимися переменными имеет вид у"= (х,у), причем его правая часть может быть представлена в виде произведения двух отдельных функций: . Тогда

Преобразуем это уравнение, разделив переменные справа и слева:

Общий вид уравнения с разделенными переменными

f (y)dy= (x)dx .

Уравнение решается непосредственным интегрированием: слева по переменной у и справа по переменной х С :

или F (y)=Ф (х)+С.

Решая это уравнение, находим:

Таким образом, алгоритм решения дифференциального уравнения с разделяющимися переменными следующий:

а) если уравнение содержит производную, то представить ее в виде ;

б) преобразовать уравнение, перенося все члены его, содержащие у , в левую часть, содержащие х – в правую;

в) проинтегрировать по общим правилам левую часть по аргументу у и правую – по аргументу х с прибавлением постоянной интегрирования С.

г) решая полученное уравнение, найти искомую функцию.



Пример16. Найти общее решение уравнения y"=2xy и частное решение, соответствующее условию

y=2 при x=0 , (33)

Решение. Представим производную y" в виде отношения дифференциалов:

Разделим переменные:

Проинтегрируем полученное уравнение:

ln y=x +C .

Так как в уравнение входит lny , то постоянную удобнее выразить в виде логарифма:

lny=х +lnC

lny- lnС=x

ln =х

Потенцируя это равенство, получим:

Отсюда , и для общего решения имеем

у=Се , (34)

Для нахождения частного решения подставим начальное условие (33) в (34):

Т.е. С=2 и искомое частное решение будет иметь вид

Задача о скорости размножения бактерий. Скорость размножения бактерий пропорциональна их количеству. В начальный момент имелось 100 бактерий, в течение трех часов их число удвоилось. Найти зависимость количества бактерий от времени.

Решение. Пусть N – количество бактерий в момент времени t. Тогда согласно условию

где k - коэффициент пропорциональности. Уравнение (36) представляет собой уравнение с разделяющимися переменными и его решение имеет вид:

Из начального условия известно, что . Следовательно,

Из дополнительного условия . Тогда

Таким образом, для искомой функции получаем:

Задача об увеличении количества фермента. В культуре пивных дрожжей быстрота прироста действующего фермента пропорциональна его начальному количеству x. Первоначальное количество фермента а в течение часа удвоилось. Найти зависимость x(t).

Решение. По условию задачи дифференциальное уравнение процесса имеет вид

где k – коэффициент пропорциональности. Общее решение уравнения (39) (уравнение с разделяющимися переменными) имеет вид:

Постоянную С найдем из начального условия :

Известно также, что . Значит

Отсюда и окончательно имеем

3. Цель деятельности студентов на занятии:

Студент должен знать:

1. Определения производной и дифференциала функции.

2. Физический и геометрический смыслы производной.

3. Таблицу производных основных элементарных функций.

4. Правила дифференцирования.

5. Аналитический и геометрический смыслы дифференциала.

6. Понятия неопределенного и определенного интегралов.

7. Таблицу основных интегралов.

8. Основные свойства неопределенного и определенного интегралов.

9. Основные методы интегрирования.

10. Определение обыкновенного дифференциального уравнения.

11. Понятие общего и частного решений дифференциального уравнения.

12. Определение дифференциального уравнения с разделяющимися переменными и алгоритм его решения.

Студент должен уметь:

1.Вычислять производные и дифференциалы функций.

2.Применять дифференциал функции в приближенных вычислениях.

3.Вычислять неопределенные и определенные интегралы различными методами.

4.Вычислять средние значения функций, площади плоских фигур, работу переменной силы.

5.Находить решения дифференциальных уравнений с разделяющимися переменными.

Теоретическая часть:

1. Задачи, приводящие к понятию производной функции.

2. Геометрический и физический смыслы производной.

3.Производная сложной функции.

4.Дифференциал функции. Геометрический и аналитический смыслы дифференциала.

5.Применение дифференциала функции в приближенных вычислениях.

6.Первообразная функции. Неопределенный интеграл. Основные свойства неопределенного интеграла.

7.Основные методы интегрирования.

8.Задачи, приводящие к понятию определенного интеграла.

9.Формула Ньютона-Лейбница. Основные свойства определенного интеграла.

10.Приложения определенного интеграла: вычисление площадей плоских фигур, вычисление средних значений функций, вычисление работы переменной силы.

11.Дифференциальные уравнения первого порядка с разделяющимися переменными.

Практическая часть:

1.Найдите производные и дифференциалы функций:

2)y= ; 5) у=arccosx ;

3) y=e 3x+1 ; 6) y= ;

2.Решите задачу:

Определить ускорение точки в указанные моменты времени, если скорость точки, движущейся прямолинейно, задается уравнениями:

а) V = t 2 + 2 t, t = 3 c ; б) V = 4 sin , t = .

3. Вычислите приращение функции, соответствующее изменению аргумента от х 1 до х 2 :

1) у = 2 х 3 - 4х; х 1 = 1; х 2 = 1, 02 ;

2) у = 3 х 2 - 2х; х 1 = 2; х 2 = 2 ,001 ;

4.Найдите интегралы, используя метод разложения:

2) ; 4) ;

5.Найдите интегралы методом замены переменной:

6. Найдите интегралы методом интегрирования по частям:

7. Вычислите определенные интегралы методом замены переменной:

8.Вычислите определенные интегралы методом интегрирования по частям:

9. Вычислите площади фигур, ограниченных линиями:

1) у=х 2 и у= х 3 .

2) и у=х.

10. Найдите средние значения функций:

1) у=соsх на отрезке .

2) на отрезке .

11. Вычислите работу переменной силы:

1) при перемещении материальной точки вдоль оси абсцисс из положения с абсциссой в положение с абсциссой

3) при условии: ;

4) при условии: .

5.Перечень вопросов для проверки исходного уровня знаний:

1. Дайте определение производной функции.

2. Сформулируйте основные правила дифференцирования.

3. Запишите формулу производной сложной функции.

4.В чем заключаются физический и геометрический смыслы производной функции?

5. Что называется дифференциалом функции?

6. В чем заключается геометрический смысл дифференциала функции?

7.Дайте определение первообразной функции.

8.Приведите основные свойства неопределенного интеграла.

9.Запишите формулу интегрирования по частям.

10.Дайте геометрическую интерпретацию определенного интеграла.

11.Запишите формулу Ньютона-Лейбница

12.Дайте определение обыкновенного дифференциального уравнения.

13.Чем отличаются частное и общее решения дифференциального уравнения?

6. Перечень вопросов для проверки конечного уровня знаний:

1. В чем состоит физический смысл производной второго порядка?

2. В чем заключается аналитический смысл дифференциала?

3. Как используется дифференциал для вычисления погрешностей?

4.Какие две основные задачи, связанные с физическим и геометрическим истолкованием производной, решаются с помощью интегрирования?

5.Как проверить правильность нахождения неопределенного интеграла?

6.Можно ли результат вычисления определенного интеграла проверить дифференцированием?

7.На чем основано применение определенного интеграла для вычисления площадей плоских фигур?

9.Приведите последовательность решения дифференциального уравнения первого порядка с разделяющимися переменными.

7. Хронокарта учебного занятия:

1. Организационный момент – 5 мин.

2. Разбор темы – 30 мин.

3.Решение примеров и задач-60 мин.

4. Текущий контроль знаний -35 мин.

5. Подведение итогов занятия – 5 мин.

8. Перечень учебной литературы к занятию:

1. Морозов Ю.В. Основы высшей математики и статистики. М., «Медицина», 2004, §§ 2.1-2.7, 2.10-2.16, 5.1-5.4, 6.1-6.7, 7.1, 7.2.

2.Павлушков И.В. и др. Основы высшей математики и математической статистики. М., «ГЭОТАР-Медиа», 2006, §§2.1, 2.2, 4.1, 4.2, 5.1-5.6, 6.1-6.3.

Все связные (названные) в задачах величины, выражаются через аргумент x, функцию y и её производную: .

1.Принципы составления дифференциальных уравнений.

Для составления и интегрирования дифференциальных уравнений приводят различные задачи физики, биологии, химии и т.д.

Например, при решении задач искомая кривая представляется как график некоторой функции, как y=y(x)

Все связные (названные) в задачах величины, выражаются через аргумент x, функцию y и её производную: .

Полученное при таком условии соотношение и представляет собой дифференциальное уравнение.

Уравнение (1) является искомым уравнением для нахождения неизвестной функции у.

При решении физических задач процесс составления дифф. Уравнения разбивается на 3 этапа:

1)одну из величин выбираем в качестве независимой переменной 2-го в качестве зависимой переменной. Чаще всего в качестве независимой переменной выбираются время t, а в качестве искомых функций пространственные координаты x,y,z.

2)находим на сколько измениться искомая функция Х, если независимая переменная t получит достаточно малое приращение

, то есть пытаемся оценить разность ч/з величины, данные в задачи.

3)делим полученное неравенство на и переходим кlim, когда в результате предельного перехода получаем дифф. Уравнение из которого можно найти искомую функцию.

3 Теорема существования решения задачи Коши дифф ур первого порядка.

Условие (2) называется начальным условием или условиями Коши .(2)

Под задачей Коши будем понимать задачу об отыскании решения уравнения (1) удовлетв.данным (2)

Геометрически это означает, что из всего множества интегральных кривых нужно выделить ту интегральную кривую, которая проходит ч/з .

Естественно встаёт вопрос, есть ли вообще решение у уравнение (1), а если и есть, то сколько таких, удовл.условию (2).

Теорема 1.(теорема существования единственности решения) – если функция f и её частная производная непрерывна в областиD, то решения дифф.уравнения (1), удовлетв.начальным условиям (2) существенно и единственно.

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение дифуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что дифуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.

Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: