Про заболевания ЖКТ

Уже более 100 лет учёные бьются над вопросом: как работает мозг человека? Открытий сделано очень много, но тайн и загадок от этого меньше не стало. Серое вещество, покоящееся в черепной коробке, представляет собой уникальнейшее образование. При небольших размерах и массе, относительно человеческого тела, оно потребляет 20% всего кислорода, который поступает в лёгкие.

Мозговое вещество полностью формируется в возрасте 7 лет. При этом ему требуется гораздо больше энергии, чем в зрелые годы. Оно абсолютно нечувствительно к боли, так как не имеет соответствующих рецепторов. Благодаря серому веществу, люди осязают, ощущают, видят, говорят, слышат. Но самое главное, человек способен думать, выражать эмоции и принимать решения.

Сколько нейронов в человеческом мозге?

Нейрон - это специфическая нервная клетка, имеющая отростки. Эти отростки соприкасаются с отростками других нейронов. В результате получается огромная сеть, через которую передаются различные сигналы. А вот каналы или нервные пути, по которым идут сигналы, называются синапсами. Вся эта сложная система в совокупности и представляет собой мозг человека. Сколько же в нём содержится нейронов?

Уже давно существует число 100 млрд. Якобы, именно оно и обозначает общее количество нейронов. Но каждый понимает, что данная величина приблизительная. Да и действительно, как посчитать все микроскопические клетки, не упустив ни одной? Задача просто невыполнимая.

Однако нейробиологи из Дании сумели сделать это. Они взяли 4 мозга умерших людей и провели с ними изотропную фрактализацию. Выражаясь простым языком, разжижили мозги и превратили их в гомогенную эмульсию или "мозговой суп". После этого были изучены образцы "супа" и подсчитано количество нейронов в них. Далее математическим путём рассчитали общее количество нервных клеток во всех 4-х исследуемых образцах мозга.

В результате этого выяснилось, что серое вещество содержит в себе примерно 86 млрд. нейронов. Ни один из 4-х образцов не набрал 100 млрд. клеток. Конечно, неискушённому человеку может показаться, что разница в 14 млрд. абсолютно непринципиальная. Но именно из такого числа нейронов состоит серое вещество бабуина. А у гориллы насчитывается 28 млрд. нейронов. Так что числа 100 и 86 представляют собой довольно существенное различие.

Размеры мозга и умственные способности

Иногда в литературе проскальзывает мысль, что чем больше у человека объём серого вещества, тем, соответственно, больше и ума. Данное утверждение довольно сомнительное, но всё познаётся в сравнении. Если, к примеру, взять мозговое вещество дельфина и муравьеда, то здесь сразу видно, что у дельфина объём больше, а ума больше и подавно. Но не стоит торопиться с выводами.

Давайте посмотрим на корову и обезьяну. Кто умнее? Конечно, обезьяна. Но мозги коровы по своим размерам значительно превосходят мозги приматов. Можно сравнить человека и кита. Средний вес серого вещества человека составляет 1,2 кг, а у огромного млекопитающего этот показатель равен 6,8 кг. Однако интеллектуальные возможности людей на несколько порядков выше. Отсюда можно сделать вывод, что размеры мозга никак не связаны с умственными способностями.

Зависит ли количество нейронов от объёма мозга?

Данный вопрос совсем не простой, как может показаться на первый взгляд. Размеры мыслительного органа у разных животных сильно различаются. При этом до недавних пор превалировало мнение, что плотность нервных клеток (отношение количества к массе) является величиной постоянной, независимо от видов и классов живых существ.

Однако в настоящее время доказано, что это вовсе не так. В наши дни достоверно известно, что у разных млекопитающих абсолютно разные правила расчёта нейронов. То есть в 1 грамме мозговой ткани может быть совершенно разное количество клеток.

В мозгах тех же приматов количество нейронов увеличивается пропорционально объёму серого вещества. А вот у грызунов пропорциональности никакой нет. У этих животных с увеличением объёма мозговой ткани количество нервных клеток уменьшается. Что же касается насекомоядных, то тут наблюдается комбинация - грызуны + приматы. Серое вещество увеличивается быстрее по-сравнению с количеством нейронов. А вот для мозжечка характерна линейная скорость роста, как и у приматов.

Вывод здесь следующий: именно мозги приматов устроены наиболее эффективно, так как максимально используют весь доступный объём. Если количество нейронов у приматов увеличить в 10 раз, то это приведёт к 11-кратному увеличению объёма мозгового вещества. А у грызунов объём увеличится в 35 раз. Если представить грызуна, у которого насчитывается 86 млрд. нейронов, то тогда вес его серого вещества будет составлять 35 кг.

Мысли и мозг человека

Работа мозга человека напрямую связана с мыслительной деятельностью. И вот тут наблюдается самое интересное. Биологическая масса, из которой и состоит серое вещество, не может вырабатывать мысли. Да, в ней наблюдается огромное количество химических и электрических процессов. Но они никак не связаны с мыслительной деятельностью, а тем более с чувствами и переживаниями. То, что делает человека "венцом природы", лежит вовсе не под черепной коробкой. А где же тогда?

Существует мнение, что кора головного мозга является всего лишь передающим устройством. Откуда-то извне к ней идут сигналы. Они воспринимаются нейронами, и таким образом зарождаются мысли. А может быть, всем руководит молекула ДНК . Именно она и генерирует определённые мыслеобразы, а человеку кажется, что думает именно он и думает при этом головой.

В любом случае, можно лишь догадываться и фантазировать. Сам же процесс мыслеобразования представляет собой тайну за семью печатями. Познать её не дано никому. Остаётся лишь принять данную информацию как должное. В то же время напрашивается логический вывод: если мысли рождаются не у нас в голове, то, стало быть, они не наши, а тогда и слушать их не стоит? Они чужаки и частенько провоцируют людей на неправильные поступки.

Таким образом, вопрос - как работает мозг человека? - остаётся без ответа. Мы лишь знаем, что в нём существует огромное количество нейронов, связанных синапсами. Нейроны объединены в группы, каждая из которых выполняет определённые функции. Это осязание, обоняние, слух, зрение, координация и многое-многое другое. Но вот что порождает мысли и чувства - тут ответа нет. А ведь это самое главное в жизнедеятельности людей. Всё остальное – обычные химические процессы, которые может познать любой человек при должном усердии и трудолюбии.

Дмитрий Шестаков

Даже сегодня остается настоящей загадкой для исследователей. Однако многое им уже удалось выяснить. Так по каким «проводам» мозг получает сообщения, и на чем основывается его работа?

Принцип работы человеческого мозга

Мозг зрелого человека весит порядка полутора килограмм, куда «вмещается» около сотни миллиардов активных клеток. Большинство клеток - это нейроны, которые служат проводниками

Как работает мозг? Принцип его деятельности можно условно сравнивать с работой электрического выключателя. Нейроны могут находиться как в «выключенном», так и «включенном» состоянии, когда электрические импульсы передаются по соответствующим проводящим путям.

Сформированы нейроны в виде тела клетки и передающих нервные импульсы аксонов. В свою очередь, нейронные аксоны связаны между собой синапсами, благодаря которым происходит передача информации между отдельными нейронами.

Роль химических веществ в деятельности мозга

Особенности мозга человека предполагают активность особых химических составляющих, известных как нейромедиаторы. Присутствие таких веществ, как дофамин или адреналин, способствует активизации тех или иных его функций. Причем различные отделы, так же как их нейроны, «применяют» в своей работе разные химические составляющие.

Благодаря химической активности мозга, его нейроны способны воспроизводить электрический заряд, мощность которого в целом может достигать около 60 Вт. Деятельность мозга, основанная на электрической активности, может быть измерена при помощи специализированного оборудования.

По каким «проводам» мозг получает сообщения?

Основным проводником для передачи информации к нейронам посредством нервных синапсов выступает спинной мозг. Сравнить можно с многожильным телефонным кабелем. Повреждение такого «кабеля» может приводить к потере человеком контроля как над отдельными конечностями, так и телом в целом. Именно посредством электрических импульсов осуществляется передача команд головного мозга телу.

Минуя синапсы спинного мозга, непосредственно в передается информация лишь от слуховых и зрительных рецепторов. Именно поэтому при парализации всего тела человек сохраняет способность слышать и видеть.

В целом же активность мозга обусловлена функционированием серого вещества, которое располагается на его поверхности и формирует кору головного мозга. Особую роль в работе головного мозга играет которое практически полностью состоит из проводящих импульсы аксонов.

Мозг: строение и функции

Человеческий мозг сформирован из двух полушарий - левого и правого, которые отвечают за выполнение отдельных функций. Так, правое полушарие мозга человека позволяет группировать поступающую информацию. В свою очередь, на возложен в основном анализ «входящих» данных. Например, правое полушарие идентифицирует предмет, а левое определяет его особенности, качества, характеристики, прочее.

По каким «проводам» мозг получает сообщения? По мнению исследователей, получая электрические импульсы, правое полушарие мозга воспринимает преимущественно абстрактные вещи и понятия, анализирует форму и цвет. В то же время левое полушарие оставляет за собой математические способности, речь и логику. Из года в год ученые находят такому специфическому разделению функций человеческого мозга и его дифференциации все новые подтверждения.

Мифы о человеческом мозге

На сегодняшний день распространенным остается мнение о том, что современный человек способен задействовать не более 10% собственного мозга. Несмотря на многочисленные споры вокруг данного вопроса, существует целая масса доказательств использования человеком всего потенциала головного мозга. Согласно данным исследователей, даже выполнение довольно простых задач нуждается в активизации практически всех областей мозга.

Ошибочно также полагать, что у слепых людей слух развит лучше, по сравнению со зрячими. Впрочем, незрячие могут похвастаться более развитой слуховой памятью. Такие люди быстрее идентифицируют источники звуков, а также активнее улавливают смысл иностранной речи.

Величина мозга абсолютно не влияет на интеллектуальные способности. Определяющим фактором в развитии интеллекта становится лишь количество нервных связей между отдельными нейронами.

Человеку сложно пощекотать самого себя. Все дело в настрое мозга на восприятие раздражителей из внешнего мира, что позволяет выделять действительно важные для организма сигналы из обширного потока ощущений. Ведь причиной возникновения большинства из них являются бессознательные действия самого человека.

Зевота является не просто условным рефлексом при отходе от сна, но и позволяет мозгу быстрее прийти в активное состояние, благодаря его активному насыщению кислородом.

Компьютерные игры дают мозгу отдых и расслабление за счет отвлечения от повседневных задач, а также учат одновременному выполнению нескольких дел одновременно. Причем лучшей в данном случае выступают активные игры, например экшны и шутеры, когда игроку приходится отражать атаки целой группы врагов, которые наступают с различных сторон в ограниченном пространстве. Участие в подобных виртуальных развлечениях позволяет человеку молниеносно реагировать на быстрое изменение ситуации и рассредоточивать внимание.

Физические упражнения способствуют поддержанию головного мозга в хорошей форме. Регулярные физические нагрузки влияют на рост количества капилляров в мозгу, что дает возможность лучше насыщать его и кислородом.

Простую песню без сложной музыкальной структуры и особой смысловой нагрузки гораздо сложнее забыть по сравнению с действительно «интеллектуальными» произведениями. Причина кроется в способности мозга к построению автоматических, привычных алгоритмов действий, куда могут встраиваться подобные мелодии.

В заключение

Человеческий мозг является крайне сложной структурой, включающей в себя целую массу функциональных отделов, работа которых основана на активизации и затухании миллиардов нейронов.

По каким «проводам» мозг получает сообщения? Роль таких проводящих путей выполняют нейронные связи. Каждый нейрон действует подобно микроскопическому электрическому выключателю, включение которого активизирует передачу нервных импульсов в нужные Поступающая из внешнего мира информация в конечном итоге передается в большие полушария головного мозга, где и происходит ее окончательный анализ и обработка.

Сегодня мы рассмотрим такие вопросы как: что такое мозг, из чего он состоит , какие функции выполняет и каким образом мы мыслим, вспоминаем и принимаем решения.

Что такое головной мозг и из чего состоит?

Это наш центральный процессор, системный администратор нашего тела, это орган ЦНС (Центральной нервной системы). От животных мы отличаемся способностью мыслить и прогнозировать, принимать невыгодные решения, но во благо других людей.

Почти 80% мозга состоит из воды (в основном в цитоплазме клеток), а еще 10-12% липидов (жира) и 8% протеина. Хотя на его долю приходится всего 2% от массы тела, головной мозг использует полностью 20-25% поставок организмом кислорода, питательных веществ и глюкозы (в качестве топлива), все из которых поставляются постоянным потоком крови. Головной мозг защищен толстыми костями черепа и гематоэнцефалическим барьером, но характер (как сложной системы) человеческого мозга, тем не менее, делает его неустойчивым ко многим видам заболеваний.

Около 100 миллиардов нейронов передают сигналы друг другу с помощью 1000 триллионов синаптических связей. Происходит постоянный приток и анализ различной информации из вне.

Мозг отвечает за контроль всех телесных действий и функций. Это также центр мышления, обучения и памяти. Мозг дает нам способности, чтобы думать, планировать, говорить, представлять, спать, использовать разум и эмоции.

Как мы размышляем?

В данный момент вы читаете этот текст, вы видите каждую букву, понимаете ее. Разберемся, почему же вы понимаете, что читаете и, твердо убеждены в правильности своих мыслей.

Это задача не из легких, но любую задачу можно решить, применив метод анализа, тоесть дробления сложного вопроса на понятные элементы, соответствующую статью сайт скоро выпустит.

  1. Органы чувств. Они так называются, потому что взаимодействуют с окружающим вас миром. Выделяют 6 органов чувств: глаза, уши, нос, кожа, язык и вестибулярный аппарат. У животных в процессе эволюции были развиты еще и эхо-локация, ощущение магнитного поля Земли и другие чувства.

С органами чувств разбираться глубоко не будем, итак понятно, что такое кожа или уши. Но вернемся к нашему примеру, мы читаем, задействуем свои глаза. Что происходит дальше.

  1. Рецепторы. Любой из органов чувств имеет свои рецепторы, это нервные клетки находящиеся «в связке» с каким-либо органом чувств. Рецепторы в глазах трансформируют картинку от глаз, упорядочивают ее. Систематизируется информацию об оттенках цветов, которые вы видите, где какой цвет находится, о различных физических предметах и их местоположении в пространстве, о многих других вещах. Вся систематизируемая информация направляются во вставочные нейроны.

В нашем примере с чтением, на этом этапе, вы еще ничего не понимаете.

  1. Вставочные нейроны. Это нейроны-посредники, они получают информацию от рецепторов и меняют ее в электрические сигналы. Что-то наподобие азбуки Морзе, только вместо букв и точек мы имеем картинку перед нашими глазами и эти самые электрические сигналы. Весь этот поток «летит» к коре головного мозга, к нейронам, находящимся в нем. Представьте, что нейрон – это проходная комната. И первыми «открывают дверь в комнату» дендриты.

Ваш мозг все еще не понимает слов.

  1. Дендриты – это «входная дверь» в нейрон, уже в мозге (на самом деле информация может «пробить стену и влететь в нейрон» и без двери). Дендрит ПОНИМАЕТ, что пришла какая-то информация. Но сам он нифига не понимает, что это значит. Для него вы читаете что-то вроде «N?n h?o, w? de x?nx?», непонятные слова, ошибка 404. Дендрит отправляет эту информацию в «дверь выхода» — аксон.
  2. Аксон в нервной клетке имеет множество ответвлений, он ищет совпадения поступающей информации в других нейронах. И находит их! Ваш мозг, ВНЕЗАПНО, осознает, что знает русский язык, так как информации полно в других нейронах. И «дорожки» от одного нейрона к другому постоянно используются, они надежные, крепкие. Параллельно с этим, в аксонах вырабатываются нейромедиаторы, отвечающие за наше настроение, энергию и здоровье. И вот нейроны поздравляют друг друга нейромедиаторами за «взаимное согласие и понимание».

Вот как работает мозг в познавательной деятельности !

Резюмируя: глаза/уши/язык.. собирают информацию, она накапливается в соответствующих рецепторах, те ее структурируют и посылают во вставочный нерв, где она трансформируется в электрические сигналы, эти сигналы принимают нервные клетки и их дендриты в коре мозга. Дендриты направляют эту информацию в аксон «на поиск соответствия». Аксон «ищет совпадения» через нейронные связи с другими нейронами. Все это происходит за доли секунды.

Если аксон не находит «совпадения», то создается тоненькая связь с новым нейроном (да, они все-таки создаются). Чем больше вы учите новой информации – тем больше создается связей и тем они крепче.

Обратное правило: если вы не учите что-то, забываете, то связи становятся тоньше. Но их можно быстро восстановить!

Рассмотрим еще 3 интересных примера: вы учитесь водить автомобиль(А), вам на голову летит кирпич(Б) и вы ищете по дому шариковую ручку(В).

А. Представьте, что вы впервые сели за руль. Вокруг столько кнопочек, 3 педали (ну или 2), всякие коробки, зеркала, так еще нужно представлять габариты автомобиля, понимать, «проеду ли я тут?». И ведь вы вроде знаете, что «выжимаем тормоз, снимаем с ручника…». Вы пробуете это делать, но руки не слушают, ноги, случайно, педали выжимают не до конца, забыли включить фары и т.д. Что происходит?

Связи между нейронами, где хранится память о вождении авто есть, но нет связей проходящих к мышцам. Цель обучения – создавать и укреплять эти нервно-мышечные связи и создавать новые между нейронами в мозге. Чем больше учишься – тем больше связей между нейронами и тем они крепче.

Замечали, как быстро вы выключаете будильник по утрам?)
Б. На вас летит кирпич! Типичная ситуация, с кем не бывало) Как только вы это осознаете, вы не ищете связи между нейронами с памятью о физике, вы не думаете, что «судя по его траектории, он пролетит мимо» или «он небольшой и попадет в плечо, а у меня толстая куртка и я ничего не почувствую». Как только до дендритов доходит информация «о летящем на вас кирпиче», вся логичность просто выключается, за дело берутся инстинкты, и вы отпрыгиваете, даже если у вас болит нога/спина/живот и вообще вам лень. Где есть угроза жизни – рулят инстинкты. Где нет – происходит поиск в нейронах мозга и нервно-мышечных связях.

В. Ищете ручку. Вам поступил важный звонок, нужно кое-что быстренько записать. Вы начинаете искать ручку, ищете глазами, спрашиваете у кого-то, нигде нет. Мозг работает очень активно, проверяются десятки тысяч связей между нейронами. Вырабатываются стрессовые нейромедиаторы, которые подгоняют мозг, как суровый офицер в армии гоняет солдат. Стресса еще больше, вдруг начинают проверяться альтернативные варианты как записать, и вы записываете на своем же телефоне, на компьютере, забираете чужой мобильник и там пишете, пытаетесь запомнить. Вам уже плевать на все, нужно тупо записать.

Все прошло, вы поговорили, информация «сохранена». Нейроны снова активно вырабатывают нейромедиаторы, но уже положительные, «поздравляю вас, коллега!»

Теперь понимаете, почему вы можете потерять дома мобильный, но никогда полностью не разучитесь водить машину.

И еще! Наверно вы слышали, что продавцы в магазинах часто дают подержать товар в руки – это не просто так! Таким образом у вас задействованы почти все органы чувств, вы видите товар, чувствуете его, еще и продавец его нахваливает (звук) – нейроны и связи создаются очень быстро. Быстрее, чем вы бы просто прочитали обзор на этот товар. Вот такая тонкая психология.)

Как мы мечтаем?

Мы можем мечтать абсолютно где угодно и когда угодно, это очень важная функция мозга! Мечты расслабляют человека, придают ему оптимизма, что, в конечном итоге, положительно сказывается на его отношении к окружающему миру. Ведь каким мы видим мир – такой он и есть.

Мечты добавляют осмысленность, логичность в нашу жизнь, как бы это странно не звучало. Они показывают к чему нам стремиться, и пока мы стремимся к мечте – мы счастливы.

Традиционно считается, что за мечты отвечает правое полушарие головного мозга. Формально это не совсем так, человек активно мечтает, когда «выключена» логика и рациональность + вырабатываются нейромедиаторы: эндорфин, ГАМК, серотонин, мелатонин. Необязательным условием является подавление «возбуждающих» нейромедиаторов.

Вспомните свое состояние, перед тем как начинаете мечтать, это монотонное и рутинное действие, когда вы не решаете никаких задач и нет стресса и «отключаетесь».
Что происходит в голове в момент «отключения» от реальности? Рассмотрим на примере.
Достаточно лишь одной маленькой, но приятной мысли. Вы идете по знакомой улице, ничего не мешает, не спешите, нет медведей и других опасностей. Заметили красивое дерево, оно вам напомнило что-то приятное. Аксон помог найти эту информацию в каком-то нейроне и выработал положительные нейромедиаторы.

Нейромедиаторы попали в клетку с этим воспоминанием, та, в свою очередь, «обрадовалась» этим положительным моментом и направила и в свой аксон запрос на поиск совпадений. Тот находит их очень быстро и их тысячи, везде вырабатываются положительные нейромедиаторы. В этом моменте, вы уже видите не просто «дерево», ваш мозг вам напомнил, как вы когда-то ездили с друзьями на озеро, шашлыки, музыка, лето. Аксоны активно ищут еще больше совпадений, и вот уже условно весь мозг рад) Он стремится продлить это воспоминание и «дорисовывает» еще больше красок + вы уже фантазируете о будущем, теперь «совпадения не ищутся», а «создаются» исходя из прошлых событий.

— А как пройти до улицы Ленина? — кто-то вас спросил.

Так, встряска, норадреналина нам, глутамата, «отрубить» весь мелатонин… Мозг очень быстро перестраивается, что от нас хотят? Как пройти до Ленина, аксонам приказываю искать ответ в нейронах…

(Через 2-3 секунды вы отвечаете) – А, это вам туда до упора.

Вы, вдруг, осознаете, что не помните, как прошли последние 100-200 метров. Ведь только что были «шашлыки, озеро». Случалось?

Правда ли, что мозг задействуется нами только на 10%?

Существует мнение, что человеческий мозг задействуется нами только на 10%. Вероятно, именно поэтому человек не может придумать, как его развить на 100%. Вопрос: почему тогда так устроен мозг и как всё таки можно заставить его работать на все сто?

Миф о работе мозга

Это неправда! Утверждение о том, что человеческий мозг работает на 10% (5%, 3%), — это старый, абсолютно неверный и совершенно неубиваемый миф. Разберемся, откуда он взялся. В середине прошлого века было совершенно непонятно, как мыслит человек (сейчас это тоже непонятно, но уже на другом уровне). Но кое-что было известно — например, что мозг состоит из нейронов и что нейроны могут генерировать электрические сигналы .

Некоторые ученые тогда считали, что если нейрон генерирует импульс, то он работает, а если не генерирует — значит, «ленится». И вот кому-то пришла в голову мысль проверить: какое количество нейронов в целом мозге «трудится», а какое — «бьет баклуши»? Нейронов в мозге несколько миллиардов, и было бы чистым безумием измерять активность каждого из них — это заняло бы много лет. Поэтому вместо того, чтобы изучать все нейроны подряд, ученые исследовали только небольшую часть, определили среди них процент активных и предположили, что по всему мозгу этот процент одинаков (такое предположение называется экстраполяцией).

И оказалось, что «работает», то есть генерирует импульсы, только неприлично малый процент нейронов, а остальные — «молчат». Из этого был сделан немного прямолинейный вывод: молчащие нейроны — бездельники, а мозг работает только на малую часть своих возможностей. Вывод этот был абсолютно неправильный, но поскольку в то время было принято «исправлять природу», например, поворачивать реки вспять, орошать пустыни и осушать моря, то идея о том, что и работу мозга тоже можно улучшить, прижилась и начала свое победное шествие по газетным страницам и журнальным разворотам. Даже и сейчас что-то подобное иногда встречается в желтой прессе.

Как примерно работает мозг

Как же всё обстоит на самом деле. Мозг человека — структура сложная, многоуровневая, высокоорганизованная. То, что написано ниже, — очень упрощенная картинка.

В мозге есть множество областей. Некоторые из них называются сенсорными — туда поступает информация о том, что мы ощущаем (ну, скажем, прикосновение к ладони). Другие области — моторные, они управляют нашими движениями. Третьи — когнитивные, именно благодаря им мы можем мыслить. Четвертые отвечают за наши эмоции. И так далее.

Почему же в мозге не включаются одновременно все нейроны? Да очень просто. Когда мы не ходим, то неактивны нейроны, запускающие процесс ходьбы. Когда молчим, «молчат» нейроны, управляющие речью. Когда ничего не слышим, не возбуждаются нейроны, отвечающие за слух. Когда не испытываем страх, не работают «нейроны страха». Иными словами, если нейроны в данный момент не нужны — они неактивны. И это прекрасно. Потому что если бы это было не так... Представим на секунду, что мы можем возбудить одновременно ВСЕ наши нейроны (больше секунды такого издевательства наш организм просто не вынесет).

Мы сразу начнем страдать от галлюцинаций, потому что сенсорные нейроны заставят нас

испытывать абсолютно все возможные ощущения. Одновременно моторные нейроны запустят все движения, на которые мы только способны. А когнитивные нейроны... Мышление — настолько сложная штука, что вряд ли на этой планете найдется хоть один человек, который сможет сказать, что случится, если одновременно возбудить все когнитивные нейроны. Но предположим для простоты, что тогда мы начнем думать одновременно все возможные мысли. И еще мы будем испытывать все возможные эмоции. И многое еще произойдет, о чём я не буду писать, потому что здесь просто не хватит места.

Посмотрим теперь со стороны на это существо, страдающее от галлюцинаций, дергающееся от конвульсий, одновременно чувствующее радость, ужас и ярость. Не очень-то оно похоже на создание, улучшившее свой мозг до стопроцентной эффективности! Наоборот. Лишняя активность мозгу не на пользу, а только во вред. Когда мы едим, нам не нужно бегать, когда сидим у компьютера — не нужно петь, а если во время решения задачи по математике думать не только о ней, но и о птичках за окном, то вряд ли эта задача решится. Для того чтобы мыслить, мало ДУМАТЬ о чём-то, надо еще НЕ ДУМАТЬ обо всём остальном. Важно не только возбуждение «нужных» нейронов, но и торможение «ненужных». Необходим баланс между возбуждением и торможением. И нарушение этого баланса может привести к очень печальным последствиям.

Например, тяжелая болезнь эпилепсия, при которой человек страдает от судорожных припадков, возникает тогда, когда возбуждение в мозге «перевешивает» торможение. Из-за этого во время припадка активизируются даже те нейроны, которые в эту секунду должны молчать; они передают возбуждение на следующие нейроны, те — на следующие, и по мозгу идет сплошная волна возбуждения. Когда эта волна доходит до моторных нейронов, они посылают сигналы к мышцам, те сокращаются, и у человека начинаются судороги. Что больной при этом ощущает, сказать невозможно, поскольку на время припадка у человека пропадает память.

Как всё-таки заставить мозг работать эффективнее

Надеюсь, вы уже поняли, что пытаться заставить мозг работать лучше, возбуждая все нейроны подряд, — дело бесперспективное, да еще и опасное. Тем не менее можно «натренировать» мозг, чтобы он работал эффективнее.

Начать придется издалека. Когда рождается маленький ребенок, количество нейронов в его мозге даже больше, чем у взрослого. Но связей между этими нейронами еще почти нет, и поэтому новорожденный человечек еще не в состоянии правильно использовать свой мозг — например, он практически не умеет ни видеть, ни слышать. Нейроны его сетчатки, даже если они чувствуют свет, не образовали еще связей с другими нейронами, чтобы передать информацию дальше, в кору больших полушарий. То есть глаз видит свет, но мозг не в состоянии понять это. Постепенно необходимые связи образуются, и в конце концов ребенок учится различать вначале просто свет, потом — силуэты простых предметов, цвета и так далее. Чем больше разнообразных вещей ребенок видит, тем больше связей образуют его зрительные пути и тем лучше работает та часть его мозга, которая связана со зрением. Но самое удивительное не это, а то, что такие связи могут образовываться почти исключительно в детстве. И поэтому если ребенок по какой-то причине не может ничего видеть в раннем возрасте (скажем, у него врожденная катаракта ), то необходимые нейронные связи в его мозге уже никогда не образуются, и человек не научится видеть. Даже если во взрослом возрасте у этого человека прооперировать катаракту, он всё равно останется слепым. Проводились довольно жестокие опыты на котятах, которым в новорожденном состоянии зашивали глаза. Котята вырастали, так ни разу ничего и не увидев; после этого им уже во взрослом возрасте снимали швы. Глаза у них были здоровые, глаза видели свет — но животные оставались слепыми. Не научившись видеть в детстве, они уже не способны были сделать это во взрослом возрасте. То есть существует какой-то критический период, в который образуются нейронные связи, необходимые для развития зрения, и если мозг не научится видеть в этот период, он уже не научится этому никогда. То же относится и к слуху, и, в меньшей степени, к другим человеческим способностям и умениям — обонянию, осязанию и вкусу, способности говорить и читать, играть на музыкальных инструментах, ориентироваться в природе и так далее. Яркий тому пример — «дети Маугли», которые потерялись в раннем детстве и были воспитаны дикими животными. Во взрослом возрасте они так и не могут освоить человеческую речь, поскольку не тренировали у себя в детстве это умение. Зато они способны ориентироваться в лесу так, как не сможет ни один человек, выросший в цивилизованных условиях.

И еще. Никогда не знаешь, в какой момент «выстрелит» какое-то умение, приобретенное в детстве. Например, человеку, который в детстве активно тренировал мелкую моторику рук, занимаясь рисованием, лепкой, рукоделием, будет легче стать хирургом, проводящим филигранные, точные операции, в которых нельзя допустить ни одного неправильного движения. Иными словами, если что и может заставить мозг работать лучше, то это — тренировка, причем тренировка с самого детства. Чем больше мозг работает, тем лучше он работает, и наоборот — чем меньше его нагружать, тем хуже он будет функционировать. И чем мозг младше, тем он более «гибкий» и восприимчивый. Именно поэтому в школах учат маленьких детей, а не взрослых дяденек и тетенек. Именно поэтому дети гораздо быстрее взрослых умеют приспосабливаться к новым ситуациям (например, осваивают компьютерную грамоту или учат иностранные языки). Именно поэтому тренировать свой интеллект надо с самого детства. И если вы будете это делать, то ничто не помешает вам сделать великие открытия. Например, о том, как работает мозг.

История компьютерных наук в целом сводится к тому, что учёные пытаются понять, как работает человеческий мозг, и воссоздать нечто аналогичное по своим возможностям. Как именно учёные его исследуют? Представим, что в XXI веке на Землю прилетают инопланетяне, никогда не видевшие привычных нам компьютеров, и пытаются исследовать устройство такого компьютера. Скорее всего, они начнут с измерения напряжений на проводниках, и обнаружат, что данные передаются в двоичном виде: точное значение напряжения не важно, важно только его наличие либо отсутствие. Затем, возможно, они поймут, что все электронные схемы составлены из одинаковых «логических вентилей», у которых есть вход и выход, и сигнал внутри схемы всегда передаётся в одном направлении. Если инопланетяне достаточно сообразительные, то они смогут разобраться, как работают комбинационные схемы - одних их достаточно, чтобы построить сравнительно сложные вычислительные устройства. Может быть, инопланетяне разгадают роль тактового сигнала и обратной связи; но вряд ли они смогут, изучая современный процессор, распознать в нём фон-неймановскую архитектуру с общей памятью, счётчиком команд, набором регистров и т.п. Дело в том, что по итогам сорока лет погони за производительностью в процессорах появилась целая иерархия «памятей» с хитроумными протоколами синхронизации между ними; несколько параллельных конвейеров, снабжённых предсказателями переходов, так что понятие «счётчика команд» фактически теряет смысл; с каждой командой связано собственное содержимое регистров, и т.д. Для реализации микропроцессора достаточно нескольких тысяч транзисторов; чтобы его производительность достигла привычного нам уровня, требуются сотни миллионов. Смысл этого примера в том, что для ответа на вопрос «как работает компьютер?» не нужно разбираться в работе сотен миллионов транзисторов: они лишь заслоняют собой простую идею, лежащую в основе архитектуры наших ЭВМ.

Моделирование нейронов

Кора человеческого мозга состоит из порядка ста миллиардов нейронов. Исторически сложилось так, что учёные, исследующие работу мозга, пытались охватить своей теорией всю эту колоссальную конструкцию. Строение мозга описано иерархически: кора состоит из долей, доли - из «гиперколонок» , те - из «миниколонок» … Миниколонка состоит из примерно сотни отдельных нейронов.

По аналогии с устройством компьютера, абсолютное большинство этих нейронов нужны для скорости и эффективности работы, для устойчивости ко сбоям, и т.п.; но основные принципы устройства мозга так же невозможно обнаружить при помощи микроскопа, как невозможно обнаружить счётчик команд, рассматривая под микроскопом микропроцессор. Поэтому более плодотворный подход - попытаться понять устройство мозга на самом низком уровне, на уровне отдельных нейронов и их колонок; и затем, опираясь на их свойства - попытаться предположить, как мог бы работать мозг целиком. Примерно так пришельцы, поняв работу логических вентилей, могли бы со временем составить из них простейший процессор, - и убедиться, что он эквивалентен по своим способностям настоящим процессорам, даже хотя те намного сложнее и мощнее.

На рисунке, приведённом чуть выше, тело нейрона (слева) - небольшое красное пятнышко в нижней части; всё остальное - дендриты , «входы» нейрона, и один аксон , «выход». Разноцветные точки вдоль дендритов - это синапсы , которыми нейрон соединён с аксонами других нейронов. Работа нейронов описывается очень просто: когда на аксоне возникает «всплеск» напряжения выше порогового уровня (типичная длительность всплеска 1мс, уровень 100мВ), то синапс «пробивается», и всплеск напряжения переходит на дендрит. При этом всплеск «сглаживается»: вначале напряжение за 5..20мс растёт до порядка 1мВ, затем экспоненциально затухает; таким образом, длительность всплеска растягивается до ~50мс.

Если несколько синапсов одного нейрона активизируются с небольшим интервалом по времени, то «разглаженные всплески», возбуждаемые в нейроне каждым из них, складываются. Наконец, если одновременно активны достаточно много синапсов, то напряжение на нейроне поднимается выше порогового уровня, и его собственный аксон «пробивает» синапсы связанных с ним нейронов.

Чем мощнее были исходные всплески, тем быстрее растут разглаженные всплески, и тем меньше будет задержка до активизации следующих нейронов.

Кроме того, бывают «тормозящие нейроны», активация которых понижает общее напряжение на связанных с ним нейронах. Таких тормозящих нейронов 15..25% от общего числа.

У каждого нейрона тысячи синапсов; но в любой момент времени активны не больше десятой части всех синапсов. Время реакции нейрона - единицы мс; такого же порядка задержки на распространение сигнала вдоль дендрита, т.е. эти задержки оказывают существенное влияние на работу нейрона. Наконец, пару соседних нейронов, как правило, связывает не один синапс, а порядка десятка - каждый с собственным расстоянием до тел обоих нейронов, а значит, с собственной длительностью задержки. На иллюстрации справа два нейрона, изображённые красным и синим, связаны шестью синапсами.

У каждого синапса своё «сопротивление», понижающее входящий сигнал (в примере выше - со 100мВ до 1мВ). Это сопротивление динамически подстраивается: если синапс активизировался сразу перед активацией аксона - то, видимо, сигнал с этого синапса хорошо коррелирует с общим выводом, так что сопротивление понижается, и сигнал будет вносить больший вклад в напряжение на нейроне. Если же синапс активизировался сразу после активации аксона - то, видимо, сигнал с этого синапса не имел отношения к активации аксона, так что сопротивление синапса повышается. Если два нейрона связаны несколькими синапсами с разной длительностью задержки, то такая подстройка сопротивлений позволяет выбрать оптимальную задержку, или оптимальную комбинацию задержек: сигнал начинает доходить именно тогда, когда от него больше всего пользы.

Таким образом, модель нейрона, принятая исследователями нейронных сетей - с единственной связью между парой нейронов и с мгновенным распространением сигнала от одного нейрона к другому - весьма далека от биологической картины. Кроме того, традиционные нейронные сети оперируют не временем отдельных всплесков, а их частотой : чем чаще всплески на входах нейрона, тем чаще будут всплески на выходе. Те детали устройства нейрона, которые отброшены в традиционной модели - существенны или несущественны они для описания работы мозга? Нейробиологи накопили огромную массу наблюдений об устройстве и поведении нейронов - но какие из этих наблюдений проливают свет на общую картину, а какие - лишь «детали реализации», и - как и предсказатель переходов в процессоре - не влияют ни на что, кроме эффективности работы? Джеймс считает, что именно временны́е характеристики взаимодействия между нейронами и позволяют приблизиться к пониманию вопроса; что асинхронность так же важна для работы мозга, как синхронность - для работы ЭВМ.

Ещё одна «деталь реализации» - ненадёжность нейрона: с некоторой вероятностью он может активизироваться спонтанно, даже если сумма напряжений на его дендритах не достигает порогового уровня. Благодаря этому, «обучение» колонки нейронов можно начинать с любого достаточно большого сопротивления на всех синапсах: вначале никакая комбинация активаций синапсов не будет приводить к активации аксона; затем спонтанные всплески приведут к тому, что понизится сопротивление синапсов, которые активизировались незадолго до этих спонтанных всплесков. Таким образом нейрон начнёт распознавать конкретные «паттерны» входных всплесков. Что самое важное, паттерны, похожие на те, на которых нейрон обучался, - тоже будут распознаваться, но всплеск на аксоне будет тем слабее и/или позднее, чем меньше нейрон «уверен» в результате. Обучение колонки нейронов получается намного эффективнее, чем обучение обычной нейронной сети: колонке нейронов не нужен контрольный ответ для тех образцов, на которых она обучается - фактически, она не распознаёт , а классифицирует входные паттерны. Кроме того, обучение колонки нейронов локализовано - изменение сопротивления синапса зависит от поведения лишь двух соединённых им нейронов, и никаких других. В результате этого, обучение приводит к изменению сопротивлений вдоль пути следования сигнала, тогда как при обучении нейронной сети веса изменяются в обратном направлении: от нейронов, ближайших к выходу - к нейронам, ближайшим ко входу.

Например, вот колонка нейронов, обученная распознавать паттерн всплесков (8,6,1,6,3,2,5) - значения обозначают время всплеска на каждом из входов. В результате обучения, задержки настроились на точное соответствие распознаваемому паттерну, так что напряжение на аксоне, вызываемое правильным паттерном, получается максимально возможным (7):

Та же самая колонка отреагирует на похожий входной паттерн (8,5,2,6,3,3,4) меньшим всплеском (6), причём напряжение достигает порогового уровня заметно позднее:

Наконец, тормозящие нейроны могут использоваться для реализации «обратной связи»: например, как на иллюстрации справа, - подавлять повторные всплески на выходе, когда вход длительное время остаётся активным; или подавлять всплеск на выходе, если он слишком задерживается по сравнению со входными сигналами, - чтобы сделать классификатор более «категоричным»; или, в нейросхеме для распознавания паттернов, разные колонки-классификаторы могут быть связаны тормозящими нейронами, чтобы активация одного классификатора автоматически подавляла все остальные классификаторы.

Распознавание изображений

Для распознавания рукописных цифер из базы MNIST (28x28 пикселей в оттенках серого) Джеймс из колонок-классификаторов, описанных выше, собрал аналог пятислойной «свёрточной нейросети» . Каждая из 64 колонок в первом слое обрабатывает фрагмент 5х5 пикселей из исходного изображения; такие фрагменты перекрываются. Колонки второго слоя обрабатывают по четыре выхода из первого слоя каждая, что соответствует фрагменту 8х8 пикселей из исходного изображения. В третьем слое всего четыре колонки - каждой соответствует фрагмент из 16х16 пикселей. Четвёртый слой - итоговый классификатор - разбивает все изображения на 16 классов: класс назначается в соответствии с тем, который из нейронов активизируется первым. Наконец, пятый слой - классический перцептрон, соотносящий 16 классов с 10 контрольными ответами.

Классические нейросети достигают на базе MNIST точности 99.5% и даже выше; но по утверждению Джеймса, его «гиперколонка» обучается за гораздо меньшее число итераций, благодаря тому, что изменения распространяются вдоль пути следования сигнала, а значит, затрагивают меньшее число нейронов. Как и для классической нейросети, разработчик «гиперколонки» определяет только конфигурацию соединений между нейронами, а все количественные характеристики гиперколонки - т.е. сопротивление синапсов с разными задержками - приобретаются автоматически в процессе обучения. Кроме того, для работы гиперколонки требуется на порядок меньшее число нейронов, чем для аналогичной по возможностям нейросети. С другой стороны, симуляция таких «аналоговых нейросхем» на электронном компьютере несколько затрудняется тем, что в отличие от цифровых схем, работающих с дискретными сигналами и с дискретными интервалами времени - для работы нейросхем важны непрерывность изменения напряжений и асинхронность нейронов. Джеймс утверждает, что шага симуляции в 0.1мс достаточно для корректной работы его распознавателя; но он не уточнял, сколько «реального времени» занимает обучение и работа классической нейросети, и сколько - обучение и работа его симулятора. Сам он давно на пенсии, и свободное время он посвящает совершенствованию своих аналоговых нейросхем.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: