Про заболевания ЖКТ

К основным клеточным иммунным компонентам относятся все лейкоциты крови, представляющие собой так называемые иммунокомпетентные клетки. Зрелые лейкоциты объединяют пять популяций клеток:

лимфоциты, моноциты, нейтрофилы, эозинофилы и базофилы. Иммунокомпетентные клетки можно обнаружить практически в любой части организма, однако сконцентрированы они преимущественно в местах своего образованияпервичных и вторичных лимфоидных органах (рис. 8.1). Первичным местом образования всех этих клеток является орган кроветворения - красный костный мозг, в синусах которого образуются и проходят полный цикл дифференцировки моноциты и все гранулоциты (нейтрофилы, эозинофилы, базофилы). Здесь же начинается дифференцировка лимфоцитов. Лейкоциты всех популяций происходят от единой костномозговой полипотентной стволовой кроветворной клетки, пул которой является самоподдерживающимся (рис. 8.2).

Различные направления дифференцировки стволовых клеток определяются специфическим микроокружением их в очагах костномозгового кроветворения и продукцией специфических гемопоэтических факторов, в том числе колониестимулирующих, кейлонов, простагландинов и других. Помимо указанных факторов, в систему контроля за образованием и дифференцировкой иммунокомпетентных клеток в костном мозге входит группа общеорганизменных регуляторных веществ, важнейшими из которых являются гормоны и медиаторы нервной системы.

Лимфоциты в организме представлены двумя большими субпопуляциями, которые различаются по гистогенезу и иммунным функциям. Это Т-лимфоциты, обеспечивающие клеточный иммунитет, и В-лимфоциты, ответственные за

осу ществление антителообразования, т. е. гуморального иммунитета. Если В-лимфоциты весь цикл дифференцировки до зрелых В-клеток проходят в костном мозге, то Т-лимфоциты на стадии пре-Т-лимфоцитов мигрируют из него по кровотоку в другой первичный лимфоидный орган - тимус, в котором заканчивается их дифференцировка с образованием всех клеточных форм зрелых Т-клеток.

Принципиально отличается от них особая субпопуляция лимфоцитов - нормальные (естественные) киллеры (НК) и К-клетки. НК являются цитотоксическими клетками, осуществляющими разрушение клеток-мишеней (главным образом, опухолевых клеток и клеток, зараженных вирусами) без предварительной иммунизации, т. е. в отсутствие антител. К-клетки способны разрушать клетки-мишени, покрытые небольшим количеством антител.

После созревания иммунокомпетентные клетки, выходят в кровоток, по которому моноциты и гранулоциты мигрируют в ткани, а лимфоциты направляются во вторичные лимфоидные органы, где происходит антигензависимая фаза их дифференцировки. Кровеносная система - основная магистраль транспорта и рециркуляции иммунных компонентов, в том числе иммунокомпетентных клеток. В крови, как правило, не происходит никаких иммунологических реакций. Кровоток только доставляет клетки к месту их функционирования.

Гранулоциты (нейтрофилы, эозинофилы, базофилы) после созревания в костном мозге выполняют лишь эффекторную функцию, после однократного выполнения которой они гибнут. Моноциты после созревания в костном мозгу оседают в тканях, где образовавшиеся из них тканевые макрофаги также выполняют эффекторную функцию, но в течение длительного периода и многократно. В отличие от всех других клеток, лимфоциты после созревания их в костном мозгу (В-клетки) или тимусе (Т-клетки) поступают во вторичные лимфоидные органы (рис. 8.3), где

Рис. 8.1 Лимфомиелоидный комплекс

КМ - костный мозг; КС - кровеносные сосуды; ЛТК - лимфоидная ткань кишки; ЛС - лимфатические сосуды; ЛУ - лимфатические узлы; СЛ - селезенка; Т - вилочковая железа (тимус).

Рис. 8.2Полипотентная стволо­вая кроветворная клетка и ее потомки ЦТЛ - цитотоксический Т-лимфоцит (Т-киллер).

основной их функцией является размножение в ответ на антигенный стимул с появлением короткоживущих специфических эффекторных клеток и долгоживущих клеток памяти. "Иммунологическая память - способность организма отвечать на повторное введение антигена иммунной реакцией, характеризующейся большей силой и более быстрым ответом, чем на первую иммунизацию.

Вторичные лимфоидные органы разбросаны по всему организму, чтобы обслуживать все ткани и участки поверхности. К вторичным лимфоидным органам относятся селезенка, лимфатические узлы, органные скопления лимфоидной ткани у слизистых оболочек - червеобразный отросток (аппендикс), пейеровы бляшки, миндалины и другие образования глоточного лимфоидного кольца солитарные (одиночные) .лимфоидные фолликулы стенок кишки и влагалища, а также диффузные скопления лимфоидных клеток в субэпителиальных пространствах всех слизистых оболочек организма и новообразованные очаги лимфоидной ткани в грануляционной ткани вокруг хронических очагов воспаления.

Во вторичных лимфоидных органах Т- и В-лимфоциты впервые контактируют с чужеродными для организма антигенами. Такой контакт осуществляется преимущественно в лимфоидной ткани, по месту поступления антигена. После контакта происходит размножение клонов (от греч. klon - росток, отпрыск) Т- и В-клеток, специфичных к данному антигену, и дифференцировка большей части клеток этих клонов в конечные эффекторные короткоживущие (Т-эффекторы из Т-лимфоцитов и плазматические клетки из В-лимфоцитов). Часть Т- и В-лимфоцитов этих специфических к антигену клонов размножается, не переходя в короткоживущие эффекторные клоны, и превращается в клетки иммунологической памяти. Последние частично мигрируют в другие вторичные лимфоидные органы, в результате чего в них возникает повышенный уровень лимфоцитов, специфичных к антигену, атаке которого организм подвергся хотя бы один раз. Благодаря этому создается иммунологическая память на конкретный антиген во всей иммунной системе.

Поступление лимфоцитов из кровотока во вторичные лимфоидные органы жестко контролируется. Существенная часть зрелых Т- и В-лимфоцитов посто янно циркулирует в кровотоке между лимфоидными органами (так называемые рециркулирующие лимфоциты). Под рециркуляцией лимфоцитов понимают процесс миграции лимфоцитов из крови в органы иммунной системы, периферические ткани и обратно в кровь (рис. 8.4). Лишь небольшая часть лимфоцитов относится к нерециркулирующему пулу.

Функциональное назначение рециркуляции лимфоцитов состоит в осуществлении постоянного «иммунного надзора» тканей организма иммунокомпетентными лимфоцитами, в эффективном обнаружении чужеродных и измененных собственных антигенов и снабжении органов лимфоцитопоэза информацией о появлении антигенов в различных тканях. Различают быструю рециркуляцию (осуществляется в течение нескольких часов) и медленную (длится неделями). В ходе быстрой рециркуляции лимфоциты крови специфически связываются со стенкой специализированных сосудов, расположенных в лимфоидных органах, - посткапиллярных венул с высоким эндотелием - и далее мигрируют через эти эндотелиальные клетки в лимфоидную ткань, затем в лимфатические сосуды и через грудной лимфатический проток возвращаются в кровь. Этим путем мигрирует около 90% лимфоцитов, имеющихся в лимфе грудного протока. При медленной рециркуляции лимфоциты крови мигрируют через посткапиллярные венулы с плоским эндотелием, характерные для неиммунных органов, в различные периферические ткани, затем попадают в лимфатические сосуды, лимфатические узлы и через лимфоток в грудной лимфатический проток снова в кровь. Таким путем рециркулирует примерно 5-10% лимфоцитов, содержащихся в лимфе грудного протока.

Специфическое связывание лимфоцитов со стенками посткапиллярных венул с высоким эндотелием происходит благодаря наличию на поверхности эндотелиальных клеток определенных молекул и соответствующих им рецепторов на Т- и В-лимфоцитах (рис. 8.5). Этот механизм обеспечивает избирательное накопление в лимфоузлах и других вторичных лимфоидных органах лимфоцитов определенных популяций. В пейеровых бляшках содержится около 70% В-лимфоцитов и 10-20% Т-лимфоцитов, в то же время в периферических лимфоузлах, наоборот, около 70% Т- и 20% В-клеток. Многие Т- и В-лимфоциты, активированные антигеном, покидают место, где они были активированы, а затем после циркуляции в кровотоке возвращаются в те же или близкие к ним лимфоидные органы. Такая закономерность лежит в основе местного иммунитета органов и тканей. Среди рециркулирующих лимфоцитов большей

скоростью миграции обладают Т-лимфоциты и клетки иммунологической памяти обоих типов.

Непосредственное участие в иммунной защите принимают также клетки кожного и слизистого покровов, создающие механический барьер на пути чужеродного антигена. В качестве механических факторов неспецифических защитных механизмов можно рассматривать слущивание (десквамацию) клеток поверхностных слоев многослойных эпителиев, выработку слизи, покрывающей слизистые оболочки, биение ресничек, осуществляющее транспорт слизи по поверхности эпителия (в респираторном тракте - мукоцилиарный транспорт). Микробы удаляются с поверхности эпителиев также током слюны, слез мочи и других жидкостей.

К гуморальным иммунным компонентам относятся самые разнообразные иммунологически активные молекулы, от простых до весьма сложных, которые продуцируются иммунокомпетентными и другими клетками и участвуют в защите организма от чужеродного или своего дефектного. Среди них, прежде всего, следует выделить вещества белковой природы - иммуноглобулины, цитокины, систему компонентов комплемента, белки острой фазы, интерферон и другие. К иммунным компонентам относятся ингибиторы ферментов, подавляющие ферментативную активность бактерий, ингибиторы вирусов, многочисленные низкомолекулярные вещества, являющиеся медиаторами иммунных реакций (гистамин, серотонин, простагландины и другие). Огромное значение для эффективной защиты организма имеют насыщенность тканей кислородом, рН среды, наличие Са 2+ и Mg 2+ и других ионов, микроэлементы, витамины и др.

8. 2. МЕХАНИЗМЫ НЕСПЕЦИФИЧЕСКОГО (ВРОЖДЕННОГО) ИММУНИТЕТА

Неспецифические (врожденные) защитные механизмы представляют собой совокупность всех физиологических факторов, способных а) предотвратить попадание в организм или б) нейтрализовать и разрушать проникшие в него чужеродные вещества и частицы или образовавшиеся в нем собственные измененные клетки. Эти механизмы не обладают специфичностью в отношении воздействующего агента.

Помимо упоминавшихся механических и химических факторов существует несколько других способов защиты: фагоцитоз («поедание» клетками), внеклеточное уничтожение зараженных вирусами и опухолевых клеток с помощью цитотоксических факторов (клеточная цитотоксичностъ) и разрушение чужеродных клеток с помощью растворимых бактерицидных соединений.

Иммунная система состоит из различных компонентов - органов, тканей и клеток, отнесённых к этой системе по функциональному критерию (выполнение иммунной защиты организма) и анатомофизиологическому принципу организации (органно-циркуляторный принцип). В иммунной системе выделяют: первичные органы (костный мозг и тимус), вторичные органы (селезёнка, лимфатические узлы, пейеровы бляшки и др.), а также диффузно расположенную лимфоидную ткань - отдельные лимфоидные фолликулы и их скопления. Особо выделяют лимфоидную ткань, ассоциированную со слизистыми оболочками (Mucosa-Associated Lymphoid Tussue - MALT).

Лимфоидная система - совокупность лимфоидных клеток и органов. Часто лимфоидную систему упоминают как анатомический эквивалент и синоним иммунной системы, однако это не вполне верно. Лимфоидная система является лишь частью иммунной системы: по лимфатическим сосудам клетки иммунной системы мигрируют к лимфоидным органам - месту индукции и формирования иммунного ответа. Кроме того, лимфоидную систему не следует путать с лимфатической - системой лимфатических сосудов, по которым происходит циркуляция лимфы в организме. Лимфоидная система тесно связана с кровеносной и эндокринной системами, а также с покровными тканями - слизистыми оболочками и кожей. Названные системы - основные партнёры, на которые в своей работе опирается иммунная система.

Органно-циркуляторный принцип организации иммунной системы. В организме взрослого здорового человека содержится около 10 13 лимфоцитов, т.е. примерно каждая десятая клетка тела - лимфоцит. Анатомо-физиологически иммунная система организована по органноциркуляторному принципу. Это означает, что лимфоциты не являются строго резидентными клетками, а интенсивно рециркулируют между лимфоидными органами и нелимфоидными тканями через лимфатические сосуды и кровь. Так, через каждый лимфатический узел за 1 ч проходит ≈10 9 лимфоцитов. Миграцию лимфоцитов обусловливают

специфические взаимодействия конкретных молекул на мембранах лимфоцитов и клеток эндотелия стенки сосудов [такие молекулы называют адгезинами, селектинами, интегринами, хоминг-рецепторами (от англ. home - дом, место прописки лимфоцита)]. В результате каждый орган обладает характерным набором популяций лимфоцитов и их клеток-партнёров по иммунному ответу.

Состав иммунной системы. По типу организации выделяют различные органы и ткани иммунной системы (рис. 2-1).

. Кроветворный костный мозг - место локализации стволовых кроветворных клеток (СКК).

Рис. 2-1. Компоненты иммунной системы

. Инкапсулированные органы: тимус, селезёнка, лимфатические узлы.

. Неинкапсулированная лимфоидная ткань.

-Лимфоидная ткань слизистых оболочек (MALT - MucosalAssociated Lymphoid Tissue). Независимо от локализации содержит внутриэпителиальные лимфоциты слизистой оболочки, а также специализированные образования:

◊ лимфоидная ткань, ассоциированная с пищеварительным трактом (GALT - Gut-Associated Lymphoid Tissue). В ней выделяют миндалины, аппендикс, пейеровы бляшки, lamina propria («собственная пластинка») кишечника, отдельные лимфоидные фолликулы и их группы;

лимфоидная ткань, ассоциированная с бронхами и бронхиолами (BALT - Bronchus-Associated Lymphoid Tissue);

◊лимфоидная ткань, ассоциированная с женскими половыми путями (VALT - Vulvovaginal-Associated Lymphoid Tissue);

◊лимфоидная ткань, ассоциированная с носоглоткой (NALT - Nose-Associated Lymphoid Tissu e).

Особое место в иммунной системе занимает печень. В ней присутствуют субпопуляции лимфоцитов и других клеток иммунной системы, «обслуживающие» в качестве лимфоидного барьера кровь воротной вены, несущей все всасываемые в кишечнике вещества.

Лимфоидная подсистема кожи - лимфоидная ткань, ассоциированная с кожей (SALT - Skin-Associated Lymphoid Tissue) - диссеминированные внутриэпителиальные лимфоциты и региональные лимфатические узлы и сосуды лимфодренажа.

. Периферическая кровь - транспортно-коммуникационный компонент иммунной системы.

Центральные и периферические органы иммунной системы

. Центральные органы. Кроветворный костный мозг и тимус - центральные органы иммунной системы, именно в них начинается миелопоэз и лимфопоэз - дифференцировка моноцитов и лимфоцитов от СКК до зрелой клетки.

До рождения плода развитие В-лимфоцитов происходит в фетальной печени. После рождения эта функция передаётся костному мозгу.

В костном мозге проходят полные «курсы» эритропоэза (образование эритроцитов), миелопоэза (образование нейтрофилов,

моноцитов, эозинофилов, базофилов), мегакариоцитопоэза (формирование тромбоцитов), а также проходит дифференцировка ДК, NK-клеток и В-лимфоцитов. - Предшественники T-лимфоцитов для прохождения лимфопоэза мигрируют из костного мозга в тимус и слизистую оболочку пищеварительного тракта (внетимическое развитие).

. Периферические органы. В периферических лимфоидных органах (селезёнка, лимфатические узлы, неинкапсулированная лимфоидная ткань) зрелые наивные лимфоциты контактируют с антигеном и АПК. Если антигенраспознающий рецептор лимфоцита связывает комплементарный антиген в периферическом лимфоидном органе, то лимфоцит вступает на путь дальнейшей дифференцировки в режиме иммунного ответа, т.е. начинает пролиферировать и продуцировать эффекторные молекулы - цитокины, перфорин, гранзимы и др. Такую додифференцировку лимфоцитов на периферии называют иммуногенезом. В результате иммуногенеза формируются клоны эффекторных лимфоцитов, распознающих антиген и организующих деструкцию как его самого, так и периферических тканей организма, где этот антиген присутствует.

Клетки иммунной системы. В состав иммунной системы входят клетки различного происхождения - мезенхимного, экто- и энтодермального.

. Клетки мезенхимного генеза. К ним относят клетки, дифференцировавшиеся из предшественников лимфо/гематопоэза. Разновидности лимфоцитов - T, B и NK, которые в процессе иммунного ответа кооперируются с различными лейкоцитами - моноцитами/ макрофагами, нейтрофилами, эозинофилами, базофилами, а также ДК, тучными клетками и эндотелиоцитами сосудов. Даже эритроциты вносят свой вклад в реализацию иммунного ответа: транспортируют иммунные комплексы «антиген-антитело-комплемент» в печень и селёзенку для фагоцитоза и разрушения.

. Эпителий. В состав некоторых лимфоидных органов (тимус, некоторые неинкапсулированные лимфоидные ткани) входят эпителиальные клетки эктодермального и энтодермального происхождения.

Гуморальные факторы. Помимо клеток, «иммунная материя» представлена растворимыми молекулами - гуморальными факторами. Это продукты B-лимфоцитов - антитела (они же иммуноглобулины) и растворимые медиаторы межклеточных взаимодействий - цитокины.

ТИМУС

В тимусе (thymus) проходит лимфопоэз значительной части T-лимфоцитов («Т» происходит от слова «Thymus»). Тимус состоит из 2 долей, каждая из которых окружена капсулой из соединительной ткани. Перегородки, идущие от капсулы, разделяют тимус на дольки. В каждой дольке тимуса (рис. 2-2) выделяют 2 зоны: по периферии - корковая (cortex), в центре - мозговая (medulla). Объём органа заполнен эпителиальным каркасом (эпителий), в котором располагаются тимоциты (незрелые Т-лимфоциты тимуса), ДК и макрофаги. ДК расположены преимущественно в зоне, переходной между корковой и мозговой. Макрофаги присутствуют во всех зонах.

. Эпителиальные клетки своими отростками обхватывают лимфоциты тимуса (тимоциты), поэтому их называют «nurse cells» (клетки-«сиделки» или клетки-«няньки»). Эти клетки не только поддерживают развивающиеся тимоциты, но также продуцируют

Рис. 2-2. Строение дольки тимуса

цитокины ИЛ-1, ИЛ-3, ИЛ-6, ИЛ-7, LIF, GM-CSF и экспрессируют молекулы адгезии LFA-3 и ICAM-1, комплементарные молекулам адгезии на поверхности тимоцитов (CD2 и LFA-1). В мозговой зоне долек расположены плотные образования из скрученных эпителиальных клеток - тельца Гассаля (тельца тимуса) - места компактного скопления дегенерирующих эпителиальных клеток.

. Тимоциты дифференцируются из костномозговых СКК. Из тимоцитов в процессе дифференцировки образуются Т-лимфоциты, способные распознавать антигены в комплексе с MHC. Однако большинство Т-лимфоцитов либо не сможет обладать этим свойством, либо будет распознавать аутоантигены. Для предотвращения выхода таких клеток на периферию в тимусе инициируется их элиминация путем индукции апоптоза. Таким образом, в норме в циркуляцию из тимуса выходят только клетки, способные распознавать антигены в комплексе со «своими» MHC, но при этом не индуцирующие развитие аутоиммунных реакций.

. Гематотимический барьер. Тимус сильно васкуляризован. Стенки капилляров и венул образуют гематотимический барьер на входе в тимус и, возможно, на выходе из него. Зрелые лимфоциты выходят из тимуса либо свободно, так как каждая долька имеет эфферентный лимфатический сосуд, выносящий лимфу в лимфатические узлы средостения, либо путём экстравазации через стенку посткапиллярных венул с высоким эндотелием в корково-мозговой области и/или через стенку обычных кровеносных капилляров.

. Возрастные изменения. К моменту рождения тимус полностью сформирован. Он густо заселён тимоцитами в течение всего детства и до момента полового созревания. После пубертата тимус начинает уменьшаться в размерах. Тимэктомия у взрослых не приводит к серьёзным нарушениям иммунитета, поскольку в детстве и подростковом возрасте создаётся необходимый и достаточный пул периферических T-лимфоцитов на всю оставшуюся жизнь.

ЛИМФАТИЧЕСКИЕ УЗЛЫ

Лимфатические узлы (рис. 2-3) - множественные, симметрично расположенные, инкапсулированные периферические лимфоидные органы бобовидной формы, размером от 0,5 до 1,5 см в длину (при отсутствии воспаления). Лимфатические узлы через афферентные (приносящие) лимфатические сосуды (их несколько на каждый узел) дренируют тка-

Рис. 2-3. Строение лимфатического узла мыши: а - корковая и мозговая части. В корковой части расположены лимфатические фолликулы, от которых в мозговую часть отходят мозговые тяжи; б - распределение T- и B-лимфоцитов. Тимусзависимая зона выделена розовым цветом, тимуснезависимая зона - жёлтым. T-лимфоциты поступают в паренхиму узла из посткапиллярных венул и вступают в контакт с фолликулярными дендритными клетками и B-лимфоцитами

невую жидкость. Таким образом, лимфатические узлы - «таможня» для всех веществ, в том числе для антигенов. Из анатомических ворот узла вместе с артерией и веной выходит единственный эфферентный (выносящий) сосуд. В итоге лимфа попадает в грудной лимфатический проток. Паренхима лимфатического узла состоит из T-клеточной, B-клеточной зон и мозговых тяжей.

. B-клеточная зона. Корковое вещество разделено соединительнотканными трабекулами на радиальные секторы и содержит лимфоидные фолликулы, это B-лимфоцитарная зона. Строма фолликулов содержит фолликулярные дендритные клетки (ФДК), формирующие особое микроокружение, в котором происходит уникальный для B-лимфоцитов процесс соматического гипермутагенеза вариабельных сегментов генов иммуноглобулинов и отбор наиболее аффинных вариантов антител («созревание аффинности антител»). Лимфоидные фолликулы проходят 3 стадии развития. Первичный фолликул - мелкий фолликул, содержащий наивные B-лимфоциты. После того как B-лимфоциты вступают в иммуногенез, в лимфоидном фолликуле появляется герминативный (зародышевый) центр, содержащий интенсивно пролиферирующие B-клетки (это происходит примерно через 4-5 дней после активной иммунизации). Это вторичный фолликул. По завершении иммуногенеза лимфоидный фолликул существенно уменьшается в размере.

. T-клеточная зона. В паракортикальной (T-зависимой) зоне лимфатического узла расположены T-лимфоциты и интердигитальные ДК (они отличаются от ФДК) костномозгового происхождения, которые презентируют антигены T-лимфоцитам. Через стенку посткапиллярных венул с высоким эндотелием происходит миграция лимфоцитов из крови в лимфатический узел.

. Мозговые тяжи. Под паракортикальной зоной расположены содержащие макрофаги мозговые тяжи. При активном иммунном ответе в этих тяжах можно видеть множество зрелых B-лимфоцитов - плазматические клетки. Тяжи впадают в синус мозгового вещества, из которого выходит эфферентный лимфатический сосуд.

СЕЛЕЗЁНКА

Селезёнка - относительно большой непарный орган массой около 150 г. Лимфоидная ткань селезёнки - белая пульпа. Селезёнка - лимфоцитарная «таможня» для антигенов, попавших в кровь. Лимфоциты

Рис. 2-4. Селезёнка человека. Тимусзависимая и тимуснезависимая зоны селезёнки. Скопление T-лимфоцитов (зелёные клетки) вокруг артерий, вышедших из трабекул, образует тимусзависимую зону. Лимфатический фолликул и окружающая его лимфоидная ткань белой пульпы формируют тимуснезависимую зону. Так же как и в фолликулах лимфатических узлов, здесь присутствуют B-лимфоциты (жёлтые клетки) и фолликулярные дендритные клетки. Вторичный фолликул содержит герминативный центр с быстроделящимися В-лимфоцитами, окружёнными кольцом малых покоящихся лимфоцитов (мантией)

селезёнки накапливаются вокруг артериол в виде так называемых периартериолярных муфт (рис. 2-4).

T-зависимая зона муфты непосредственно окружает артериолу. B-клеточные фолликулы расположены ближе к краю муфты. Артериолы селезёнки впадают в синусоиды (это уже красная пульпа). Синусоиды заканчиваются венулами, собирающимися в селезёночную вену, несущую кровь в воротную вену печени. Красную и белую пульпу разделяет диффузная маргинальная зона, населенная особой популяцией В-лимфоцитов (В-клетки маргинальной зоны) и особыми макрофагами. Клетки маргинальной зоны являются важным связующим звеном между врождённым и приобретённым иммунитетом. Здесь происходит самый первый контакт организованной лимфоидной ткани с возможными патогенами, циркулирующими в крови.

ПЕЧЕНЬ

Печень выполняет важные иммунные функции, что вытекает из следующих фактов:

Печень - мощный орган лимфопоэза в эмбриональном периоде;

Аллогенные трансплантаты печени отторгаются менее интенсивно, чем другие органы;

Толерантность к вводимым перорально антигенам можно индуцировать только при нормальном физиологическом кровоснабжении печени и не удаётся индуцировать после операции по созданию портокавальных анастомозов;

Печень синтезирует белки острой фазы (СРБ, MBL и др.), а также белки системы комплемента;

В печени содержатся разные субпопуляции лимфоцитов, в том числе уникальные лимфоциты, сочетающие признаки T- и NK-клеток (NKT-клетки).

Клеточный состав печени

Гепатоциты формируют паренхиму печени и содержат очень мало молекул MHC-I. Молекулы MHC-II гепатоциты в норме почти не несут, однако их экспрессия может возрастать при заболеваниях печени.

Клетки Купфера - макрофаги печени. Они составляют около 15% от общего числа клеток печени и 80% всех макрофагов организма. Плотность макрофагов выше в перипортальных областях.

Эндотелий синусоидов печени не имеет базальной мембраны - тонкой внеклеточной структуры, состоящей из разных типов коллагенов и других белков. Эндотелиальные клетки формируют монослой с просветами, через которые лимфоциты могут непосредственно контактировать с гепатоцитами. Кроме того, эндотелиальные клетки экпрессируют различные рецепторы-«мусорщики» (scavenger-рецепторы).

Лимфоидная система печени, кроме лимфоцитов, содержит анатомический отдел циркуляции лимфы - пространства Диссе. Эти пространства с одной стороны непосредственно контактируют с кровью синусоидов печени, а с другой - с гепатоцитами. Лимфоток в печени значителен - не менее 15-20% всего лимфотока организма.

Звёздчатые клетки (клетки Ито) расположены в пространствах Диссе. Они содержат жировые вакуоли с витамином А, а также характерные для гладкомышечных клеток α-актин и десмин. Звёздчатые клетки могут трансформироваться в миофибробласты.

ЛИМФОИДНАЯ ТКАНЬ СЛИЗИСТЫХ ОБОЛОЧЕК И КОЖИ

Неинкапсулированная лимфоидная ткань слизистых оболочек представлена глоточным лимфоидным кольцом Пирогова-Вальдейера, пейеровыми бляшками тонкой кишки, лимфоидными фолликулами аппендикса, лимфоидной тканью слизистых оболочек желудка, кишечника, бронхов и бронхиол, органов мочеполовой системы и других слизистых оболочек.

Пейеровы бляшки (рис. 2-5) - групповые лимфатические фолликулы, расположенные в lamina propria тонкой кишки. Фолликулы, точнее T-клетки фолликулов, примыкают к кишечному эпителию под так называемыми M-клетками («М» от Membranous, эти клетки не имеют микроворсинок), являющимися «входными воротами» пейеровой бляшки. Основная масса лимфоцитов расположена в B-клеточных фолликулах с зародышевыми центрами. T-клеточные зоны окружают фолликул ближе к эпителию. B-лимфоциты составляют 50-70%, T-лимфоциты - 10-30% всех клеток пейеровой бляшки. Основная функция пейеровых бляшек - поддержание иммуногенеза B-лимфоцитов и их дифференци-

Рис. 2-5. Пейерова бляшка в стенке кишки: а - общий вид; б - упрощённая схема; 1 - энтероциты (эпителий кишки); 2 - М-клетки; 3 - T-клеточная зона; 4 - B-клеточная зона; 5 - фолликул. Масштаб между структурами не выдержан

ровка в плазматические клетки, продуцирующие антитела - преимущественно секреторные IgA. Продукция IgA в слизистой оболочке кишки составляет более 70% общей ежедневной продукции иммуноглобулинов в организме - у взрослого человека около 3 г IgA каждый день. Более 90% всего синтезируемого организмом IgA экскретируется через слизистую оболочку в просвет кишки.

Внутриэпителиальные лимфоциты. Помимо организованной лимфоидной ткани в слизистых оболочках есть и одиночные внутриэпителиальные T-лимфоциты, диссеминированные среди эпителиальных клеток. На их поверхности экспрессирована особая молекула, обеспечивающая адгезию этих лимфоцитов к энтероцитам, - интегрин α Е (CD103). Порядка 10-50% внутриэпителиальных лимфоцитов составляют TCRγδ + CD8αα + T-лимфоциты.

Ярко-красного цвета, непрерывно циркулирующая по замкнутой системе кровеносных сосудов . В организме взрослого человека содержится приблизительно 5 литров крови. Часть крови (около 40 %) не циркулирует по кровеносным сосудам, а находится в «депо» (капиллярах, печени, селезенке, легких, коже). Это резерв, поступающий в кровяное русло в случае кровопотери, мышечной работы или недостатка кислорода. Кровь имеет слабощелочную реакцию.

Кровь

Клетки (46 %) – форменные элементы: эритроциты, лейкоциты, тромбоциты;
Плазма (54 %) – жидкое межклеточное вещество = вода + сухое вещество (8–10 %): органические вещества (78 %) – белки (фибриноген, альбумин, глобулины), углеводы, жиры; Неорганические вещества (0,9 %) – минеральные соли в виде ионов (К+, Na+, Ca2+)
Плазма – бледно-желтая жидкость, в состав которой входит вода (90 %) и растворенные, взвешенные в ней вещества (10 %); представляет собой кровь, очищенную от клеток крови (форменных элементов).

Кроме воды в состав плазмы входят разнообразные вещества, основу которых составляют белки: сывороточный альбумин, связывающий кальций, сывороточные глобулины, выполняющие функции переноса веществ и осуществления иммунных реакций; протромбин и фибриноген, участвующий в процессах метаболизма. Кроме того, в плазме содержится большое количество ионов, витамины, гормоны, растворимые продукты пищеварения и вещества, образовавшиеся в процессе метаболических реакций. Кроме того, из плазмы можно выделить сыворотку. Сыворотка почти тождественна плазме по составу, но в ней отсутствует фибриноген. Образуется сыворотка при свертывании крови вне организма после отделения от нее кровяного сгустка.

Форменными элементами крови являются:

Эритроциты – мелкие безъядерные клетки двояковогнутой формы. Они имеют красный цвет из-за присутствия белка – гемоглобина, состоящего из двух частей: белковой – глобина и железосодержащей – гема. Эритроциты образуются в красном костном мозге и переносят кислород ко всем клеткам. Открыты эритроциты Левенгуком в 1673 году. Количество эритроцитов в крови взрослого человека составляет 4,5–5 млн. на 1 кубическом мм. В состав эритроцитов входит вода (60 %) и сухой остаток (40 %). Кроме переноса кислорода эритроциты регулируют количество различных ионов в плазме крови, участвуют в гликолизе, отбирают на себя токсины, и некоторые лекарственные вещества из плазмы крови, фиксируют некоторые вирусы.
Среднее содержание гемоглобина в 100 г. крови у здоровых женщин составляет 13,5 г., а у мужчин – 15 г. Если выделенную из организма кровь с предохраняющей от свертывания жидкостью поместить в стеклянный капилляр, то эритроциты начнут склеиваться и оседать на дно. Это принято называть скоростью оседания эритроцитов (СОЭ). В норме СОЭ составляет 4–11 мм./ч. СОЭ служит важным диагностическим фактором в медицине.

Лейкоциты – бесцветные ядерные клетки крови человека. В покое имеют округлую форму, способны активно передвигаться, могут проникать сквозь стенки сосудов. Основная функция – защитная, с помощью ложноножек поглощают и уничтожают различные микроорганизмы. Лейкоциты также были открыты Левенгуком в 1673 году и классифицированы Р. Вирховым в 1946 году. Различные лейкоциты имеют в составе цитоплазмы гранулы, либо не имеют, но в отличие от эритроцитов, имеют ядро.
Гранулоциты. Образуются в красном костном мозге. Имеют разделенное на лопасти ядро. Способны к амебоидному движению. Подразделяются на: нейтрофилы, эозинофилы, базофилы.

Нейтрофилы . Или фагоциты. На их долю приходится около 70 % всех лейкоцитов. Они проходят пространства между клетками, образующими стенки сосудов, и направляются к тем участкам тела, где обнаруживается очаг внешней инфекции. Нейтрофилы являются активными поглотителями болезнетворных бактерий, которых переваривают внутри образующихся при этом лизосом.

Тромбоциты – самые мелкие клетки крови. Их иногда называют кровяными пластинками, они безъядерные. Главная функция – участие в свертывании крови. Тромбоциты называют кровяными пластинками. По сути своей клетками не являются. Представляют собой обломки крупных, содержащихся в красном костном мозге клеток – мегакариоцитов. В 1 мм3 крови взрослого человека содержится 230–250 тыс. тромбоцитов.

Функции крови:

Транспортная – кровь переносит кислород, питательные вещества, удаляет углекислый газ, продукты обмена, распределяет тепло;
Защитная – лейкоциты, антитела защищают от инородных тел и веществ;
Регуляторная – по крови распространяются гормоны (вещества, регулирующие жизненно-важные процессы);
Терморегулирующая – кровь переносит тепло;
Механическая – придает органам упругость за счет прилива крови.
Иммунитет – способность организма защищать себя от болезнетворных микробов и , инородных тел и веществ.

Иммунитет бывает:

Естественный – Врожденный, Приобретенный
Искусственный – Активный (вакцинация), Пассивный (введение лечебной сыворотки)
Защита организма от инфекции осуществляется не только клетками – фагоцитами, но и особыми белковыми веществами – . Физиологическую сущность иммунитета определяют две группы лимфоцитов: Б– и Т–лимфоциты. Важным является укрепление естественного врожденного иммунитета. У человека выделяют два вида иммунитета: клеточный и гуморальный. Клеточный иммунитет связан с наличием в организме Т–лимфоцитов, которые способны связываться с антигенами чужеродных частиц и вызывать их разрушение.
Гуморальный иммуните т связан с наличием В–лимфоцитов. Эти клетки выделяют химические вещества – антитела. Антитела, присоединяясь к антигенам ускоряют их захват фагоцитами, либо приводят к химическому разрушению или склеиванию и осаждению антигенов.

Естественный врожденный иммунитет . В данном случае готовые антитела попадают естественным путем из одного организма в другой. Пример: попадание антител матери в организм . Такой вид иммунитета может обеспечить лишь кратковременную защиту (на время существования данных антител).
Приобретенный естественный иммунитет . Образование антител происходит в результате попадания естественным путем в организм антигенов (в результате заболевания). Формирующиеся при этом «клетки памяти» способны сохранить информацию о конкретном антигене значительное время.
Искусственный активный иммунитет . Возникает при введении в организм искусственным путем небольшого количества антигена в виде вакцины.
Искусственный пассивный . Возникает при введении человеку готовых антител извне. Например, при введении готовых антител против столбняка. Действие такого иммунитета непродолжительно. Особые заслуги в разработке теории иммунитета принадлежат Луи Пастеру, Эдуарду Дженнеру, И. И. Мечникову.

Написано -ПоЗиТиВ- Прочитать цитируемое сообщение

Из чего состоит кровь и как функционирует иммунная система?

Функции иммунной системы

Основной функцией иммунной системы является надзор за макромолекулярным и клеточным постоянством организма, защита организма от всего чужеродного. Иммунная система вместе с нервной и эндокринной системами регулируют и контролируют все физиологические реакции организма, тем самым, обеспечивая жизнедеятельность и жизнеспособность организма. Иммунокомпетентные клетки являются обязательным элементом воспалительной реакции и во многом определяют характер и ход её течения. Важной функцией иммунокомпетентных клеток является контроль и регуляция процессов регенерации тканей.


Свою основную функцию иммунная система осуществляет через развитие специфических (иммунных) реакций, в основе которых лежит способность распознавания "своего" и "чужого" и последующая элиминация чужеродного. Появляющиеся в результате иммунной реакции специфические антитела составляют основу гуморального иммунитета, а сенсибилизированные лимфоциты являются основными носителями клеточного иммунитета.

Иммунная система обладает феноменом "иммунологической памяти", который характеризуется тем, что повторный контакт с антигеном вызывает ускоренное и усиленное развитие иммунного ответа, что обеспечивает более эффективную защиту организма по сравнению с первичной иммунной реакцией. Эта особенность вторичной иммунной реакции лежит в основе смысла вакцинации, которая успешно защищает от большинства инфекций. Следует отметить, что иммунные реакции не всегда выполняют только защитную роль, они могут быть причиной иммунопатологических процессов в организме и обусловливать целый ряд соматических заболеваний человека.

Структура иммунной системы

Иммунная система человека представлена комплексом лимфомиелоидных органов и лимфоидной ткани, ассоциированной с дыхательной, пищеварительной и мочеполовой системами. К органам иммунной системы относятся: костный мозг, тимус, селезёнка, лимфатические узлы. В состав иммунной системы, помимо перечисленных органов, также входят миндалины носоглотки, лимфоидные (пейеровы) бляшки кишечника, многочисленные лимфоидные узелки, расположенные в слизистых оболочках желудочно-кишечного тракта, дыхательной трубки, урогенитальных путей, диффузная лимфоидная ткань, а также лимфоидные клетки кожи и межэпителиальные лимфоциты.

Главным элементом иммунной системы являются лимфоидные клетки. Общее число лимфоцитов у человека составляет 1012 клеток. Вторым важным элементом иммунной системы являются макрофаги. Кроме этих клеток, в защитных реакциях организма участвуют гранулоциты. Лимфоидные клетки и макрофаги объединены понятием иммунокомпетентные клетки.

В иммунной системе выделяют Т-звено и В-звено или Т-систему иммунитета и В-систему иммунитета. Основными клетками Т-системы иммунитета являются Т-лимфоциты, основными клетками В-системы иммунитета  В-лимфоциты. К главным структурным образованиям Т-системы иммунитета относятся тимус, Т-зоны селезёнки и лимфатических узлов; В-системы иммунитета – костный мозг, В-зоны селезёнки (центры размножения) и лимфатических узлов (кортикальная зона). Т-звено иммунной системы ответственно за реакции клеточного типа, В-звено иммунной системы реализует реакции гуморального типа. Т-система контролирует и регулирует работу В-системы. В свою очередь, В-система способна оказывать влияние на работу Т-системы.

Среди органов иммунной системы различают центральные органы и периферические органы. К центральным органам относятся костный мозг и тимус, к периферическим – селезёнка и лимфатические узлы. В костном мозге из стволовой лимфоидной клетки происходит развитие В-лимфоцитов, в тимусе из стволовой лимфоидной клетки происходит развитие Т-лимфоцитов. По мере созревания Т- и В-лимфоциты покидают костный мозг и тимус и заселяют периферические лимфоидные органы, расселяясь соответственно в Т- и В-зонах.

Из чего состоит кровь?

Кровь состоит из форменных элементов (или клеток крови) и плазмы. На плазму приходится 55-60% всего объема крови, клетки крови составляют соответственно 40-45%.

Плазма

Плазма представляет собой слегка желтоватую полупрозрачную жидкость с удельным весом 1,020-1,028 (удельный вес крови 1,054-1,066) и состоит из воды, органических соединений и неорганических солей. 90-92% составляет вода, 7-8% - белки, 0,1% - глюкоза и 0,9% - соли.

Клетки крови

Эритроциты

В плазме крови взвешены красные кровяные тельца, или эритроциты. Эритроциты многих млекопитающих и человека представляют двояковогнутые диски, не имеющие ядер. Диаметр эритроцитов человека равен 7-8 µ, а толщина - 2-2,5 µ. Образование эритроцитов происходит в красном костном мозге, в процессе созревания они теряют ядра, а затем поступают в кровь. Средняя продолжительность жизни одного эритроцита составляет примерно 127 дней, затем эритроцит разрушается (преимущественно в селезенке).

Гемоглобин

Молекулы гемоглобина из старых эритроцитов в селезенке и печени подвергаются расщеплению, атомы железа используются снова, а гем разрушается и выделяется печенью в виде билирубина и других желчных пигментов. Ядерные эритроциты могут появиться в крови после больших кровопотерь, а также при нарушении нормальных функций ткани красного костного мозга. У взрослого мужчины в 1 мм3 крови содержится около 5 400 000 эритроцитов, а у взрослой женщины - 4 500 000 - 5 000 000. У новорожденных детей эритроцитов больше - от 6 до 7 млн в 1 мм3. Каждый эритроцит содержит около 265 млн молекул гемоглобина - красного пигмента, переносящего кислород и углекислоту. Подсчитано, что ежесекундно образуется около 2,5 млн эритроцитов и столько же разрушается. А так как в каждом эритроците содержится 265·106 молекул гемоглобина, то ежесекундно образуется примерно 650·1012 молекул такого же гемоглобина.

Гемоглобин состоит из двух частей: белковой - глобина и железосодержащей - гема. В капиллярах легких кислород диффундирует из плазмы в эритроциты и соединяется с гемоглобином (Hb), образуя оксигемоглобин (HbO2): Hb+O2 « HbO2. В капиллярах тканей в условиях низкого парциального давления кислорода комплекс HbO2 распадается. Гемоглобин, соединенный с кислородом, называется оксигемоглобином, а гемоглобин, отдавший кислород - восстановленным гемоглобином. Некоторое количество СO2 переносится кровью в форме непрочного соединения с гемоглобином - карбооксигемоглобина.

Лейкоциты

Кровь содержит пять видов белых кровяных телец, или лейкоцитов, - бесцветных клеток, содержащих ядро и цитоплазму. Они образуются в красном костном мозгу, лимфатических узлах и селезенке. Лейкоциты лишены гемоглобина и способны к активному амебоидному движению. Лейкоцитов меньше, чем эритроцитов - в среднем около 7 000 на 1 мм3, но число их колеблется в пределах от 5 000 до 9 000 (или 10 000) у разных людей и даже у одного и того же человека в разное время суток: меньше всего их рано утром, а больше всего - после полудня. Лейкоциты делятся на три группы: 1) зернистые лейкоциты, или гранулоциты (их цитоплазма содержит гранулы), среди них различают нейтрофилы, эозинофилы и базофилы; 2) незернистые лейкоциты, или агранулоциты, - лимфоциты; 3) моноциты.

Тромбоциты

Есть еще одна группа форменных элементов - это тромбоциты, или кровяные пластинки, - наименьшие из всех клеток крови. Они образуются в костном мозгу. Количество их в 1 мм3 крови колеблется от 300 000 до 400 000. Они играют важную роль в начале процесса свертывания крови. У большинства позвоночных

Интересно знать, что иммунная система работает внутри нашего организма все время на протяжении жизни, но мы этого не замечаем. Все мы знаем такие органы, как сердце, почки, легкие и печень, но мало кто знает о, например, вилочковой железе. Вы знали, что у вас есть тимус в грудной клетке рядом с сердцем? В системе иммунитета есть много других составляющих, которые мы сейчас рассмотрим.

Начнем с очевидных. Например, кожа - орган, который мы постоянно видим, является важной составляющей иммунной системы. Она является первичной границей между вашим организмом и бактериями и микробами. Она как пластиковая оболочка - непроницаемая и служит отличным барьером для инородных тел. Эпидермис содержит специальные клетки, называемые Лангерганса, которые являются важным компонентом раннего предупреждения иммунной системы. Кожа так же выделяет антибактериальные вещества, которые не дают вам проснуться утром со слоем плесени - бактериями и спорами.

Ваш нос, рот и глаза - очевидные точки входа для микробов. Слезы и носовая слизь содержат специальный фермент - лизоцим, который разрушает клеточную стенку большинства бактерий. Слюна так же является антибактериальной. Помимо носовой полости легкие так же покрыты слизью, которая поглощает бактерии, не позволяя им усвоиться. Любому вирусу, прежде чем атаковать ваш организм, сначала необходимо преодолеть все эти преграды.

Если все таки вирус нашел способ пробраться в ваш организм, иммунная система включает следующие компоненты:

  • Тимус
  • Селезенка
  • Лимфатическая система
  • Костный мозг
  • Белые кровяные клетки
  • Антитела
  • Система комплемента
  • Гормоны

Давайте рассмотрим каждый из этих компонентов по отдельности:

Лимфатическая система

Этот компонент иммунной системы является наиболее известным, вероятно из-за того, что врачи или наши мамы часто проверяли у нас увеличенные лимфоузлы на шее . На самом деле узлы являются лишь частью системы, простирающейся по всему телу подобно кровеносным сосудам. Основное отличии между кровеносной и лимфотической системами является то, что кровь обращается посредством давления, оказываемого сердцем, в то время как лимфа передвигается пассивно. На передвижение влияет сокращение мышц. Одной из задач лимфатической системы является отвод и фильтрация жидкости для обнаружения бактерий. Небольшие лимфатические сосуды перемещают жидкость в сторону больших, а уже по ним жидкость поступает в лимфоузлы для обработки.

Тимус

Тимус находится в грудной клетке между грудиной и вашим сердцем. Он отвечает за производство Т-клеток, что особенно важно для новорожденных. Без тимуса иммунная система разрушается и ребенок может умереть. У взрослого человека этот орган уже не играет такой важности. Другие компоненты вполне могут взять его нагрузку.

Селезенка

Селезенка фильтрует кровь и ищет чужеродные клетки (она так же ищет старые красные кровяные клетки, нуждающиеся в замене).

Костный мозг

Костный мозг производит новые клетки крови - красные и белые. Эритроциты полностью формируются в костном мозге и затем поступают в кровоток. Некоторые белые кровяные клетки созревают в другом месте. Костный мозг производит все клетки крови из стволовых клеток. Они так называются, потому что могут быть материалом для различных видов клеток.

Антитела

Антитела имеют форму Y-образного протеина, с учетом конкретных антигеном (бактерий, вирусов или токсинов). Каждое тело имеет специальный раздел (на кончиках двух ветвей Y), который чувствителен к конкретному антигену и в какой-то мере связывается с ним. Когда антитело связывается с токсином, оно нейтрализует его, являясь своего рода противоядием. Связывание обычно отключает воздействие токсина. Связываясь с внешней оболочкой вируса или бактерии, оно останавливает его передвижение.

Антитела имеют пять классов:

  • Иммуноглобулин (IgA)
  • Иммуноглобулин D (IgD)
  • Иммуноглобулин Е (IgE)
  • Иммуноглобулин G (IgG)
  • Иммуноглобулин М (IgM)

Система комплемента

Система комплимента, как и антитела, представляет собой ряд белков. Существуют миллионы различных антител в вашей крови, каждое из которых чувствительно к специфическому антигену. Производимые печенью, они работают в паре с антителами и помогают уничтожать вредоносные бактерии.

Гормоны

Существует несколько гормонов, генерирующих компоненты иммунной системы. Эти гормоны известны, как лимфокины. Известно так же, что некоторые гормоны подавляют иммунитет, например, стероиды и кортикостероиды (компоненты адреналина).

Tymosin - гормон, которые стимулирует выработку лимфоцитов (форма белых кровяных клеток). Интерлейкины - другой тип гормона стимулирует клетки ИЛ-1, которые достигая гипоталамуса, производят лихорадку и усталость. Повышенная температура от лихорадки, как известно, убивает некоторые бактерии.

Ошибки иммунной системы

Иногда иммунная система работает неправильно и совершает ошибки. Одним из типов таких ошибок называются аутоиммунные. Когда система по разным причинам атакует свой собственный организм, нанося ему вред.

  • Ювенальный диабет - иммунитет атакует и устраняет клетки поджелудочной железы, производящие инсулин.
  • Ревматоидный артрит - атака внутресоставных тканей.
  • Аллергия - когда по какой-то причине иммунная система реагирует на аллерген, который должен быть проигнорирован. Аллерген может содержаться в пище, пыльце или на теле животных.
  • Последний пример - отторжение при пересадке органов и тканей. Это не совсем ошибка, но она приводит к большим трудностям при пересадке органов.

Предлагаем вам ознакомиться с линейкой аппаратов .




Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: