Про заболевания ЖКТ

Тема: Водно-солевой и минеральный обмен

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический.

Водно-солевой обмен – обмен воды и основных электролитов организма ( Na + , K + , Ca 2+ , Mg 2+ , Cl - , HCO 3 - , H 3 PO 4 ).

Электролиты – вещества, диссоциирующие в растворе на анионы и катионы. Их измеряют в моль/л.

Неэлектролиты – вещества, недиссоциирующие в растворе (глюкоза, креатинин, мочевина). Их измеряют в г/л.

Минеральный обмен – обмен любых минеральных компонентов, в том числе и тех, которые не влияют на основные параметры жидкой среды в организме.

Вода – основной компонент всех жидкостей организма.

Биологическая роль воды

  1. Вода является универсальным растворителем для большинства органических (кроме липидов) и неорганических соединений.
  2. Вода и растворенные в ней вещества создают внутреннюю среду организма.
  3. Вода обеспечивает транспорт веществ и тепловой энергии по организму.
  4. Значительная часть химических реакций организма протекает в водной фазе.
  5. Вода участвует в реакциях гидролиза, гидратации, дегидратации.
  6. Определяет пространственное строение и свойства гидрофобных и гидрофильных молекул.
  7. В комплексе с ГАГ вода выполняет структурную функцию.

ОБЩИЕ СВОЙСТВА ЖИДКОСТЕЙ ОРГАНИЗМА

Все жидкости организма характеризуются общими свойствами: объемом, осмотическим давлением и величиной рН.

Объем. У всех наземных животных жидкости составляет около 70% от массы тела.

Распределение воды в организме зависит от возраста, пола, мышечной массы, телосложения и количества жира. Содержание воды в различных тканях распределяется следующим образом: легкие, сердце и почки (80%), скелетная мускулатура и мозг (75%), кожа и печень (70%), кости (20%), жировая ткань (10%). В целом, у худых людей меньше жира и больше воды. У мужчин на воду приходится 60%, у женщин - 50% от массы тела. У пожилых людей больше жира и меньше мышц. В среднем в организме мужчин и женщин старше 60 лет содержится соответственно 50% и 45% воды.

При полном лишении воды смерть наступает через 6-8 дней, когда количество воды в организме снижается на 12%.

Вся жидкость организма разделена на внутриклеточный (67%) и внеклеточный (33%) бассейны.

Внеклеточный бассейн (экстрацеллюлярное пространство) состоит из:

1. Внутрисосудистой жидкости;

2. Интерстициальной жидкости (межклеточная);

3. Трансцеллюлярной жидкости (жидкость плевральной, перикардиальной, перитонеальной полостей и синовиального пространства, цереброспинальная и внутриглазная жидкость, секрет потовых, слюнных и слезных желез, секрет поджелудочной железы, печени, желчного пузыря, ЖКТ и дыхательных путей).

Между бассейнами жидкости интенсивно обмениваются. Перемещение воды из одного сектора в другой происходит при изменении осмотического давления.

Осмотическое давление – это давление, которое создают все растворенные в воде вещества. Осмотическое давление внеклеточной жидкости определяется главным образом концентрацией NaCl .

Внеклеточная и внутриклеточная жидкости значительно отличаются по составу и концентрации отдельных компонентов, но общая суммарная концентрация осмотически активных веществ примерно одинакова.

рН – отрицательный десятичный логарифм концентрации протонов. Величина рН зависит от интенсивности образования в организме кислот и оснований, их нейтрализации буферными системами и удалением из организма с мочой, выдыхаемым воздухом, потом и калом.

В зависимости от особенности обмена, величина рН может заметно отличаться как внутри клеток разных тканей, так и в разных отсеках одной клетки (в цитозоле кислотность нейтральная, в лизосомах и в межмембранном пространстве митохондрий - сильно кислая). В межклеточной жидкости разных органов и тканей и плазме крови величина рН, как и осмотическое давление, относительно постоянная величина.

РЕГУЛЯЦИЯ ВОДНО-СОЛЕВОГО БАЛАНСА ОРГАНИЗМА

В организме водно-солевой баланс внутриклеточной среды поддерживается постоянством внеклеточной жидкости. В свою очередь, водно-солевой баланс внеклеточной жидкости поддерживается через плазму крови с помощью органов и регулируется гормонами.

1. Органы, регулирующие водно-солевой обмен

Поступление воды и солей в организм происходит через ЖКТ, этот процесс контролируется чувством жажды и солевым аппетитом. Выведение излишков воды и солей из организма осуществляют почки. Кроме того, воду из организма выводят кожа, легкие и ЖКТ.

Баланс воды в организме

Поступление

Выведение

1,1-1,4л жидкая пища через ЖКТ

1,2-1,5л с мочой через почки

0,8-1л твердая пища через ЖКТ

0,5-0,6л испаряется через кожу

0,3л метаболическая вода

0,4л с выдыхаемым воздухом через легкие

0,1-0,3л с калом через ЖКТ

Итого: 2,2-2,7л

Итого: 2,2-2,7л

Для ЖКТ, кожи и легких выведение воды является побочным процессом, который происходит в результате выполнения ими своих основных функций. Например, ЖКТ теряет воду, при выделении из организма непереваренных веществ, продуктов метаболизма и ксенобиотиков. Легкие теряют воду при дыхании, а кожа при терморегуляции.

Изменения в работе почек, кожи, легких и ЖКТ может привести к нарушению водно-солевого гомеостаза. Например, в жарком климате, для поддержания температуры тела, кожа усиливает потовыделение, а при отравлениях, со стороны ЖКТ возникает рвота или диарея. В результате усиленной дегидратации и потери солей в организме возникает нарушение водно-солевого баланса.

2. Гормоны, регулирующие водно-солевой обмен

Вазопрессин

Антидиуретический гормон (АДГ), или вазопрессин - пептид с молекулярной массой около 1100 Д, содержащий 9 АК, соединённых одним дисульфидным мостиком.

АДГ синтезируется в нейронах гипоталамуса, переносится в нервные окончания задней доли гипофиза (нейрогипофиз).

Высокое осмотическое давление внеклеточной жидкости активирует осморецепторы гипоталамуса, в результате возникают нервные импульсы, которые передаются в заднюю долю гипофиза и вызывают высвобождение АДГ в кровоток.

АДГ действует через 2 типа рецепторов: V 1 , и V 2 .

Главный физиологический эффект гормона, реализуется через V 2 рецепторы, которые находятся на клетках дистальных канальцев и собирательных трубочек, которые относительно непроницаемы для молекул воды.

АДГ через V 2 рецепторы стимулирует аденилатциклазную систему, в результате фосфорилируются белки, стимулирующие экспрессию гена мембранного белка - аквапорина-2 . Аквапорин-2 встраивается в апикальную мембрану клеток, образуя в ней водные каналы. По этим каналам вода пассивной диффузией реабсорбируется из мочи в интерстициальное пространство и моча концентрируется.

В отсутствие АДГ моча не концентрируется (плотность <1010г/л) и может выделяться в очень больших количествах (>20л/сут), что приводит к дегидратации организма. Это состояние называется несахарный диабет .

Причиной дефицита АДГ и несахарного диабета являются: генетические дефекты синтеза препро-АДГ в гипоталамусе, дефекты процессинга и транспорта проАДГ, повреждения гипоталамуса или нейрогипофиза (например, в результате черепно-мозговой травмы, опухоли, ишемии). Нефрогенный несахарный диабет возникает вследствие мутации гена рецептора АДГ типа V 2 .

Рецепторы V 1 локализованы в мембранах ГМК сосудов. АДГ через рецепторы V 1 активирует инозитолтрифосфатную систему и стимулирует высвобождение Са 2+ из ЭР, что стимулирует сокращение ГМК сосудов. Сосудосуживающий эффект АДГ проявляется при высоких концентрациях АДГ.

Натриуретический гормон (предсердный натриуретический фактор, ПНФ, атриопептин)

ПНФ - пептид, содержащий 28 АК с 1 дисульфидным мостиком, синтезируется, главным образом, в кардиомиоцитах предсердий.

Секрецию ПНФ стимулирует в основном повышение АД, а также увеличение осмотического давления плазмы, частоты сердцебиений, концентрации катехоламинов и глюкокортикоидов в крови.

ПНФ действует через гуанилатциклазную систему, активируя протеинкиназу G.

В почках ПНФ расширяет приносящие артериол, что увеличивает почечный кровоток, скорость фильтрации и экскрецию Na + .

В периферических артериях ПНФ снижает тонус гладких мышц, что расширяет артериолы и понижает АД. Кроме того, ПНФ ингибирует выделение ренина, альдостерона и АДГ.

Ренин-ангиотензин-альдостероновая система

Ренин

Ренин - протеолитический фермент, продуцируемый юкстагломерулярными клетками, расположенными вдоль афферентных (приносящих) артериол почечного тельца. Секрецию ренина стимулирует падение давления в приносящих артериолах клубочка, вызванное уменьшением АД и снижением концентрации Na + . Секрецию ренина также способствует снижение импульсации от барорецепторов предсердий и артерий в результате уменьшения АД. Секрецию ренина ингибирует Ангиотензин II, высокое АД.

В крови ренин действует на ангиотензиноген.

Ангиотензиноген - α 2 -глобулин, из 400 АК. Образование ангиотензиногена происходит в печени и стимулируется глюкокортикоидами и эстрогенами. Ренин гидролизует пептидную связь в молекуле ангиотензиногена, отщепляя от него N-концевой декапептид - ангиотензин I , не имеющий биологической активности.

Под действием антиотензин-превращающего фермента (АПФ) (карбоксидипептидилпептидазы) эдотелиальных клеток, лёгких и плазмы крови, с С-конца ангиотензина I удаляются 2 АК и образуется ангиотензин II (октапептид).

Ангиотензин II

Ангиотензин II функционирует через инозитолтрифосфатную систему клеток клубочковой зоны коры надпочечников и ГМК. Ангиотензин II стимулирует синтез и секрецию альдостерона клетками клубочковой зоны коры надпочечников. Высокие концентрации ангиотензина II вызывают сильное сужение сосудов периферических артерий и повышают АД. Кроме этого, ангиотензин II стимулирует центр жажды в гипоталамусе и ингибирует секрецию ренина в почках.

Ангиотензин II под действием аминопептидаз гидролизуется в ангиотензин III (гептапептид, с активностью ангиотензина II, но имеющий в 4 раза более низкую концентрацию), который затем гидролизуется ангиотензиназами (протеазы) до АК.

Альдостерон

Альдостерон - активный минералокортикостероид, синтезирующийся клетками клу-бочковой зоны коры надпочечников.

Синтез и секрецию альдостерона стимулируют ангиотензин II , низкая концентрация Na + и высокая концентрацией К + в плазме крови, АКТГ, простагландины. Секрецию альдостерона тормозит низкая концентрация К + .

Рецепторы альдостерона локализованы как в ядре, так и в цитозоле клетки. Альдостерон индуцирует синтез: а) белков-транспортёров Na + , переносящих Na + из просвета канальца в эпителиальную клетку почечного канальца; б) Na + ,К + -АТФ-азы в) белков-транспортёров К + , переносящих К + из клеток почечного канальца в первичную мочу; г) митохондриальных ферментов ЦТК, в частности цитратсинтазы, стимулирующих образование молекул АТФ, необходимых для активного транспорта ионов.

В результате альдостерон стимулирует реабсорбцию Na + в почках, что вызывает задержку NaCl в организме и повышает осмотическое давление.

Альдостерон стимулирует секрецию К + , NH 4 + в почках, потовых железах, слизистой оболочке кишечника и слюнных железах.

Роль системы РААС в развитии гипертонической болезни

Гиперпродукция гормонов РААС вызывает повышение объема циркулирующей жидкости, осмотического и артериального давления, и ведет к развитию гипертонической болезни.

Повышение ренина возникает, например, при атеросклерозе почечных артерий, который возникает у пожилых.

Гиперсекреция альдостерона – гиперальдостеронизм , возникает в результате нескольких причин.

Причиной первичного гиперальдостеронизма (синдром Конна ) примерно у 80% больных является аденома надпочечников, в остальных случаях - диффузная гипертрофия клеток клубочковой зоны, вырабатывающих альдостерон.

При первичном гиперальдостеронизме избыток альдостерона усиливает реабсорбцию Na + в почечных канальцах, что служит стимулом к секреции АДГ и задержке воды почками. Кроме того, усиливается выведение ионов К + , Mg 2+ и Н + .

В результате развиваются: 1). гипернатриемия, вызывающая гипертонию, гиперволемию и отёки; 2). гипокалиемия, ведущая к мышечной слабости; 3). дефицит магния и 4). лёгкий метаболический алкалоз.

Вторичный гиперальдостеронизм встречается гораздо чаще, чем первичный. Он может быть связан с сердечной недостаточностью, хроническими заболеваниями почек, а также с опухолями, секретирующие ренин. У больных наблюдают повышенный уровень ренина, ангиотензина II и альдостерона. Клинические симптомы менее выражены, чем при первичном альдостеронизе.


КАЛЬЦИЙ, МАГНИЙ, ФОСФОРНЫЙ ОБМЕН

Функции кальция в организме:

  1. Внутриклеточный посредник ряда гормонов (инозитолтрифосфатная система);
  2. Участвует в генерации потенциалов действия в нервах и мышцах;
  3. Участвует в свертывании крови;
  4. Запускает мышечное сокращение, фагоцитоз, секрецию гормонов, нейромедиаторов и т.д.;
  5. Участвует в митозе, апоптозе и некробиозе;
  6. Увеличивает проницаемость мембраны клеток для ионов калия, влияет на натриевую проводимость клеток, на работу ионных насосов;
  7. Кофермент некоторых ферментов;

Функции магния в организме:

  1. Является коферментом многих ферментов (транскетолаз (ПФШ), глюкозо-6ф дегидрогеназы, 6-фосфоглюконат дегидрогеназы, глюконолактон гидролазы, аденилатциклазы и т.д.);
  2. Неорганический компонент костей и зубов.

Функции фосфата в организме:

  1. Неорганический компонент костей и зубов (гидроксиаппатит);
  2. Входит в состав липидов (фосфолипиды, сфинголипиды);
  3. Входит в состав нуклеотидов (ДНК, РНК, АТФ, ГТФ, ФМН, НАД, НАДФ и т.д.);
  4. Обеспечивает энергетический обмен т.к. образует макроэргические связи (АТФ, креатинфосфат);
  5. Входит в состав белков (фосфопротеины);
  6. Входит в состав углеводов (глюкозо-6ф, фруктозо-6ф и т.д.);
  7. Регулирует активность ферментов (реакции фосфорилирования / дефосфорилирования ферментов, входит в состав инозитолтрифосфата – компонента инозитолтрифосфатной системы);
  8. Участвует в катаболизме веществ (реакция фосфоролиза);
  9. Регулирует КОС т.к. образует фосфатный буфер. Нейтрализует и выводит протоны с мочой.

Распределение кальция, магния и фосфатов в организме

У взрослого человека содержится в среднем 1000г кальция:

  1. Кости и зубы содержат 99% кальция. В костях 99% кальция находится в виде малорастворимого гидроксиапатита [Са 10 (РО 4) 6 (ОН) 2 Н 2 О], а 1% - в виде растворимых фосфатов;
  2. Внеклеточная жидкость 1%. Кальций плазмы крови представлен в виде: а). свободных ионов Са 2+ (около 50%); б). ионов Са 2+ соединённых с белками, главным образом, с альбумином (45%); в) недиссоциирующих комплексов кальция с цитратом, сульфатом, фосфатом и карбонатом (5%). В плазме крови концентрация общего кальция составляет 2, 2-2,75 ммоль/л, а ионизированного - 1,0-1,15 ммоль/л;
  3. Внутриклеточная жидкость содержит кальция в 10000-100000 раз меньше чем внеклеточной жидкости.

Во взрослом организме содержится в около 1кг фосфора:

  1. Кости и зубы содержат 85% фосфора;
  2. Внеклеточная жидкость – 1% фосфора. В сыворотке крови концентрация неорганического фосфора – 0,81-1,55 ммоль/л, фосфора фосфолипидов 1,5-2г/л;
  3. Внутриклеточная жидкость – 14% фосфора.

Концентрация магния в плазме крови 0,7-1,2 ммоль/л.

Обмен кальция, магния и фосфатов в организме

С пищей в сутки должно поступать кальция - 0,7-0,8г, магния - 0,22-0,26г, фосфора – 0,7-0,8г. Кальций всасывается плохо на 30-50%, фосфор хорошо – на 90%.

Помимо ЖКТ, кальций, магний и фосфор поступают в плазму крови из костной ткани, в процессе ее резорбции. Обмен между плазмой крови и костной тканью по кальцию составляет 0,25-0,5г/сут, по фосфору – 0,15-0,3г/сут.

Выводится кальций, магний и фосфор из организма через почки с мочой, через ЖКТ с калом и через кожу с потом.

Регуляция обмена

Основными регуляторами обмена кальция, магния и фосфора являются паратгормон, кальцитриол и кальцитонин.

Паратгормон

Паратгормон (ПТГ) - полипептид, из 84 АК (около 9,5 кД), синтезируется в паращитовидных железах.

Секрецию паратгормона стимулирует низкая концентрация Са 2+ , Mg 2+ и высокая концентрация фосфатов, ингибирует витамин Д 3 .

Скорость распада гормона уменьшается при низкой концентрации Са 2+ и увеличивается, если концентрация Са 2+ высока.

Паратгормон действует на кости и почки . Он стимулирует секрецию остеобластами инсулиноподобного фактора роста 1 и цитокинов , которые повышают метаболическую активность остеокластов . В остеокластах ускоряется образование щелочной фосфатазы и коллагеназы , которые вызывают распад костного матрикса, в результате чего происходит мобилизация Са 2+ и фосфатов из кости во внеклеточную жидкость.

В почках паратгормон стимулирует реабсорбцию Са 2+ , Mg 2+ в дистальных извитых канальцах и уменьшает реабсорбцию фосфатов.

Паратгормон индуцирует синтез кальцитриола (1,25(OH) 2 D 3).

В результате паратгормон в плазме крови повышает концентрацию Са 2+ и Mg 2+ , и снижает концентрацию фосфатов.

Гиперпаратиреоз

При первичном гиперпаратиреозе (1:1000) нарушается механизм подавления секреции паратгормона в ответ на гиперкальциемию. Причинами могут быть опухоль (80%), диффузная гиперплазия или рак (менее 2%) паращитовидной железы.

Гиперпаратиреоз вызывает:

1. разрушение костей , при мобилизации из них кальция и фосфатов. Увеличивается риск переломов позвоночника, бедренных костей и костей предплечья;

2. гиперкальциемию , при усилении реабсорбции кальция в почках. Гиперкальциемия приводить к снижению нервно-мышечной возбудимости и мышечной гипотонии. У больных появляются общая и мышечная слабость, быстрая утомляемость и боли в отдельных группах мышц;

3. образования в почках камней при увеличение концентрации фосфата и Са 2+ в почечных канальцах;

4. гиперфосфатурию и гипофосфатемию , при снижении реабсорбции фосфатов в почках;

Вторичный гиперпаратиреоз возникает при хронической почечной недостаточности и дефиците витамина D 3 .

При почечной недостаточности угнетается образование кальцитриола, что нарушает всасывание кальция в кишечнике и приводит к гипокальциемии . Гиперпаратиреоз возникает в ответ на гипокальциемию, но паратгормон не способен нормализовать уровень кальция в плазме крови. Иногда возникает гиперфостатемия. В следствие повышения мобилизации кальция из костной ткани развивается остеопороз.

Гипопаратиреоз

Гипопаратиреоз обусловлен недостаточностью паращитовидных желёз и сопровождается гипокальциемией. Гипокальциемия вызывает повышение нервно-мышечной проводимости, приступы тонических судорог, судороги дыхательных мышц и диафрагмы, ларингоспазм.

Кальцитриол

Кальцитриол синтезируется из холестерола.


1. В коже под влиянием УФ-излучения из 7-дегидрохолестерола образуется большая часть холекальциферола (витамина Д 3). Небольшое количество витамина Д 3 поступает с пищей. Холекальциферол связывается со специфическим витамин Д-связывающим белком (транскальциферином), поступает в кровь и переносится в печень.

2. В печени 25-гидроксилаза гидроксилирует холекальциферол в кальцидиол (25-гидроксихолекальциферол, 25(OH)Д 3). D-связывающий белок транспортирует кальцидиол в почки.

3. В почках митохондриальная 1α-гидроксилаза гидроксилирует кальцидиол в кальцитриол (1,25(OH) 2 Д 3), активную форму витамина Д 3 . Индуцирует 1α-гидроксилазу паратгормон.

Синтез кальцитриола стимулирует паратгормон, низкая концентрация фосфатов и Са 2+ (через паратгормон) в крови.

Синтез кальцитриола ингибирует гиперкальциемия, она активирует 24α-гидроксилазу , которая превращает кальцидиол в неактивный метаболит 24,25(OH) 2 Д 3 , при этом соответственно активный кальцитриол не образуется.

Кальцитриол воздействует на тонкий кишечник, почки и кости.

Кальцитриол:

1. в клетках кишечника индуцирует синтез Са 2+ -переносящих белков, которые обеспечивают всасывание Са 2+ , Mg 2+ и фосфатов;

2. в дистальных канальцах почек стимулирует реабсорбцию Са 2+ , Mg 2+ и фосфатов;

3. при низком уровне Са 2+ увеличивает количество и активность остеокластов, что стимулирует остеолиз;

4. при низком уровне паратгормона, стимулирует остеогенез.

В результате кальцитриол повышает в плазме крови концентрацию Са 2+ , Mg 2+ и фосфатов.

При дефиците кальцитриола нарушается образование аморфного фосфата кальция и кристаллов гидроксиапатитов в костной ткани, что приводит к развитию рахита и остеомаляции.

Рахит - заболевание детского возраста, связанное недостаточной минерализацией костной ткани.

Причины рахита : недостаток витамина Д 3 , кальция и фосфора в пищевом рационе, нарушение всасывания витамина Д 3 в тонком кишечнике, снижением синтеза холекальциферола из-за дефицита солнечного света, дефект 1а-гидроксилазы, дефект рецепторов кальцитриола в клетках-мишенях. Снижение концентрации в плазме крови Са 2+ стимулирует секрецию паратгормона, который через остеолиз вызывает разрушение костной ткани.

При рахите поражаются кости черепа; грудная клетка вместе с грудиной выступает вперёд; деформируются трубчатые кости и суставы рук и ног; увеличивается и выпячивается живот; задерживается моторное развитие. Основные способы предупреждения рахита - правильное питание и достаточная инсоляция.

Кальцитонин

Кальцитонин - полипептид, состоит из 32 АК с одной дисульфидной связью, секретируется парафолликулярными К-клетками щитовидной железы или С-клетками паращитовидных желёз.

Секрецию кальцитонина стимулирует высокая концентрация Са 2+ и глюкагона, подавляет низкая концентрация Са 2+ .

Кальцитонин:

1. подавляет остеолиз (снижая активность остеокластов) и ингибирует высвобождение Са 2+ из кости;

2. в канальцах почек тормозит реабсорбцию Са 2+ , Mg 2+ и фосфатов;

3. тормозит пищеварение в ЖКТ,

Изменения уровня кальция, магния и фосфатов при различных патологиях

Снижение концентрации Са 2+ в плазме крови наблюдается при:

  1. беременности;
  2. алиментарной дистрофии;
  3. рахите у детей;
  4. остром панкреатите;
  5. закупорке желчевыводящих путей, стеаторее;
  6. почечной недостаточности;
  7. вливание цитратной крови;

Повышение концентрации Са 2+ в плазме крови наблюдается при:

  1. переломы костей;
  2. полиартриты;
  3. множественные миеломы;
  4. метастазы злокачественных опухолей в кости;
  5. передозировка витамина Д и Са 2+ ;
  6. механическая желтуха;

Снижение концентрации фосфатов в плазме крови наблюдается при:

  1. рахите;
  2. гиперфункции паращитовидных желез;
  3. остеомаляции;
  4. почечный ацидоз

Повышение концентрации фосфатов в плазме крови наблюдается при:

  1. гипофункции паращитовидных желез;
  2. передозировка витамина Д;
  3. почечной недостаточности;
  4. диабетическом кетоацидозе;
  5. миеломной болезни;
  6. остеолизе.

Концентрация магния часто пропорциональна концентрации калия и зависит от общих причин.

Повышение концентрации Mg 2+ в плазме крови наблюдается при:

  1. распаде тканей;
  2. инфекциях;
  3. уремии;
  4. диабетическом ацидозе;
  5. тиреотоксикозе;
  6. хроническом алкоголизме.

Роль микроэлементов: Mg 2+ , Mn 2+ , Co , Cu , Fe 2+ , Fe 3+ , Ni , Mo , Se , J . Значение церулоплазмина, болезнь Коновалова-Вильсона.

Марганец – кофактор аминоацил-тРНК синтетаз.

Биологическая роль Na + , Cl - , K + , HCO 3 - - основных электролитов, значение в регуляции КОС. Обмен и биологическая роль. Анионная разность и ее коррекция.

Тяжелые металлы (свинец, ртуть, медь, хром и др.), их токсическое действие.

Повышение содержание хлоридов в сыворотке крови : обезвоживание, острая почечная недостаточность, метаболический ацидоз после диареи и потери бикарбонатов, респираторный алкалоз, травма головы, гипофункция надпочечников, при длительном приеме кортикостероидов, тиазидный диуретиков, гиперальдостеронизм, болезнь Кушенга.

Снижение содержания хлоридов в сыворотке крови : алкалоз гипохлоремический (после рвоты), ацидоз респираторный, избыточное потоотделение, нефрит с потерей солей (нарушение реабсорбции), травма головы, состояние с увеличением объема внеклеточной жибкости, калит язвенный, болезнь Аддисона (гипоальдостеронизм).

Повышенное выделение хлоридов с мочой : гипоальдостеронизм (болезнь Аддисона), нефрит с потерей солей, повышенный прием соли, лечение диуретиками.

Снижение выведения хлоридов с мочой : Потеря хлоридов при рвоте, диареи, болезнь Кушинга, терминальная фаза почечной недостаточности, ретенция соли при образовании отеков.

Выделение кальция с мочой в норме 2,5-7,5 ммоль/сут.

Повышение содержание кальция в сыворотке крови : гиперпаратиреоз, метастазы опухолей в костную ткань, миеломная болезнь, сниженное выделение кальцитонина, передозировка витамина Д, тиреотоксикоз.

Снижение содержания кальция в сыворотке крови : гипопаратиреоз, увеличение выделения кальцитонина, гиповитаминоз Д, нарушение реабсорбции в почках, массивная гемотрансфузия, гипоальбунемия.

Повышенное выделение кальция с мочой : длительное воздействие солнечных лучей (гипервитаминоз Д), гиперпаратиреоз, метастазы опухолей в костную ткань, нарушение реабсорбции в почках, тиреотоксикоз, остеопороз, лечение глюкокортикоидами.

Снижение выведения кальция с мочой : гипопаратиреоз, рахит, острый нефрит (нарушение фильтрации в почках), гипотериоз.

Повышение содержание железа в сыворотке крови : апластическая и гемолитическая анемии, гемохроматоз, острый гепатит и стеатоз, цирроз печени, талассемия, повторные трансфузии.

Снижение содержания железа в сыворотке крови : железодефицитная анемия, острые и хронические инфекции, опухоли, заболевания почек, кровопотеря, беременность, нарушение всасывания железа в кишечнике.

Минеральный обмен – совокупность процессов всасывания, усвоения, распределения, превращения и выделения из организма тех веществ, которые находятся в нём преимущественно в виде неорганических соединений. Минеральные вещества в составе биологической жидкости создают внутреннюю среду организма с постоянными физико-химическими свойствами, что обеспечивает нормальное функционирование клеток и тканей. Определения содержания и концентрации ряда минеральных веществ в жидкостях организма является важным диагностическим тестов при многих заболеваниях. В одних случаях нарушение минерального обмена является причиной заболевания, в других – лишь симптомами заболевания, однако любая болезнь в той или иной степени сопровождается нарушением водно-минерального обмена.

По количеству основную часть минеральных соединений организма составляют хлористые, фосфорнокислые и углекислые соли натрия, калия, кальция и магния. Кроме того в организме содержатся соединения железа, марганца, цинка, меди, кобальта, йода и ряда других микроэлементов.

Минеральные соли в водных средах организма частично или полностью растворяются и существуют в виде ионов. Минеральные вещества могут находиться также в форме нерастворимых соединений. В костной и хрящевой тканях сосредоточено 99% всего кальция организма, 87% фосфора, 50% магния. Минеральные вещества входят в состав многих органических соединений, например белков. Минеральный состав некоторых тканей взрослого человека приведён в таблице.

Минеральный состав некоторых тканей взрослого человека (на 1 кг свежего веса ткани)

Наименование ткани Натрий Калий Кальций Магний Хлор Фосфор (моли)
миллиэквиваленты
Кожи 79,3 23,7 9,5 3,1 71,4 14,0
Мозга 55,2 84,6 4,0 11,4 40,5 100,0
Почки 82,0 45,0 7,0 8,6 67,8 57,0
Печени 45,6 55,0 3,1 16,4 41,3 93,0
Сердечной мышцы 57,8 64,0 3,8 13,2 45,6 49,0
Скелетной мышцы 36,3 100,0 2,6 16,7 22,1 58,8

Основными источника минеральных веществ для организма являются продукты питания. Наибольшее количество минеральных солей содержится в мясе, молоке, чёрном хлебе, бобовых и овощах.

Из желудочно-кишечного тракта минеральные вещества поступают в кровь и лимфу. Ионы некоторых металлов (Ca, Fe, Cu, Co, Zn) уже в процессе или после всасывания соединяются со специфическими белками.

Избыток минеральных веществ у человека выводится в основном через почки (ионы Na, K, Cl, I), а также через кишечник (ионы Ca, Fe, Cu и др.). Полное выведение значительного избытка солей, который чаще всего возникает при избыточном потреблении поваренной соли, происходит лишь при отсутствии ограничений в питье. Это связано с тем, что моча человека содержит не более 2% солей (предельная концентрация с которой могут работать почки).

Водно-солевой обмен

Водно-солевой обмен является частью минерального обмена, он представляет собой совокупность процессов поступления в организм воды и солей, главным образом NaCl, распределение их во внутренней среде и выведения из организма. Нормальный водно-солевой обмен обеспечивает постоянный объём крови и других жидкостей организма, осмотическое давление и кислотно-щелочное равновесие. Основным минеральным веществом, благодаря которому организм регулирует осмотическое давление, является натрий, примерно 95% осмотического давления плазмы крови регулируется с помощью этого минерального вещества.

Водно-солевой обмен - это совокупность процессов поступления воды и солей (электролитов) в организм, распределение их во внутренней среде и выведения из организма. Системы регуляции водно-солевого обмена обеспечивают постоянство суммарной концентрации растворённых частиц, ионного состава и кислотно-щелочного равновесия, а также объёма и качественного состава жидкостей организма.

Организм человека состоит в среднем на 65% из воды (от 60 до 70% от веса тела), которая находится в трёх жидкостных фазах - внутриклеточной, внеклеточной и трансцеллюлярной. Наибольшее количество вода (40 - 45%) находится внутри клеток. Внеклеточная жидкость включает (в процентах от веса тела) плазму крови (5%), межклеточную жидкость (16%) и лимфу (2%). Трансцеллюлярная жидкость (1 - 3%) изолирована от сосудов слоем эпителия и по своему составу близка к внеклеточной. Это - спинномозговая и внутриглазная жидкость, а также жидкость брюшной полости, плевры, перикарда, суставных сумок и желудочно-кишечного тракта.

Водный и электролитный балансы у человека рассчитываются по суточному потреблению и выделению воды и электролитов из организма. Вода поступает в организм в виде питья - примерно 1,2 литра и с пищей - примерно 1 литр. Около 0,3 литра вода образуется в процессе обмена веществ (из 100 грамм жиров, 100 грамм углеводов и 100 грамм белков образуется 107, 55 и 41 мл воды соответственно). Суточная потребность взрослого человека в электролитах составляет примерно: натрий - 215, калий - 75, кальций - 60, магний - 35, хлор - 215, фосфат - 105 мг-экв в день. Эти вещества всасываются в желудочно-кишечном тракте и поступают в кровь. Временно они могут депонироваться в печени. Избыток воды и электролитов выводится почками, лёгкими, кишечником и кожей. В среднем за сутки выделения воды с мочой составляет 1,0 - 1,4 литра, с калом - 0,2, с кожей и с потом 0,5, лёгкими - 0,4 литра.

Вода, поступившая в организм, распределяется между различными жидкостными фазами в зависимости от концентрации в них осмотически активных веществ. Направление движения воды зависит о осмотического градиента и определяется состоянием цитоплазматической мембраны. На распределение воды между клеткой и межклеточной жидкостью оказывает влияние не общее осмотическое давление внеклеточной жидкости, а её эффективное осмотическое давление, которое определяется концентрацией в жидкости веществ, плохо проходящих через клеточную мембрану.

У человека и животных одной из главных констант является рН крови, поддерживаемый на уровне около 7,36. В крови имеется ряд буферных систем - бикарбонатная, фосфатная, белки плазмы, а также гемоглобин, - поддерживающие рН крови на постоянном уровне. Но в основном рН плазмы крови зависит от парциального давления углекислого газа и концентрации НСО3 .

Отдельные органы и ткани животных и человека существенно различаются по содержанию воды и электролитов.

Содержание воды в различных органах и тканях взрослого человека к весу ткани

Важнейшее значение для деятельности клеток всех органов и систем имеет поддержания ионной асиметрии между внутриклеточной и внеклеточной жидкостью. В крови и других внеклеточных жидкостях высока концентрация ионов натрия, хлора, бикарбоната; в клетках главными электролитами являются калий, магний и органические фосфаты.

Биологические жидкости, выделяемые различными железами, отличаются по ионному составу от плазмы крови. Молоко изоосмотично по отношению к крови, но в нём ниже, чем в плазме, концентрация натрия и выше содержания кальция, калия, фосфатов. Пот имеет меньшую концентрацию ионов натрия, чем плазма крови; желчь весьма близка к плазме крови по содержанию ряда ионов.

Многие ионы, особенно ионы металлов, являются компонентами белков, в том числе ферментов. Около 30% всех известных ферментов для полного проявления своей каталитической активности нуждаются в присутствии минеральных веществ, чаще всего это K, Na, Mq, Ca, Zn, Cu, Mn, Fe.

В регуляции водно-солевого обмена решающую роль играют почки и группа специальных гормонов.

Для того чтобы поддерживать водный и солевой обмен веществ на должном уровне надо соблюдать несколько правил:

1. Употреблять в течение дня необходимое количество воды

2. Стараться употреблять минеральную, столовую (не газированную) воду.

3. Так как основным источником минеральных солей являются фрукты и овощи надо регулярно (каждый день) употреблять их в пищу.

4. При необходимости использовать БАД (биологические активные добавки) к обычному рациону питания, этим способом можно быстрее всего насытить организм минеральными солями.

Дополнительные статьи с полезной информацией
Особенности обмена воды и минеральных солей у детей

Родителям, чтобы воспитать здорового ребёнка, надо глубже вникать в физиологические особенности подрастающего поколения. Дети отличаются от взрослых не только ростом и неуверенным знанием таблицы умножения, но и процессами происходящими внутри организма.

Нарушения обмена минеральных веществ у человека

Ежесекундно в организме человека протекает большое количество химических реакций и по разным причинам возможны нарушения в этом отлаженном природой механизме.

Нормальное функционирование нашего организма - невероятно сложный комплекс внутренних процессов. Одним из них оказывается поддержание водно-солевого обмена. Когда он в норме, мы не спешим ощутить собственное здоровье, стоит же произойти нарушениям, как в организме происходят сложные и вполне заметные отклонения. Что же такое и почему так важно контролировать его и поддерживать в норме?

Что такое водно-солевой обмен?

Водно-солевым обменом называют сочетающиеся между собой процессы поступления жидкости (воды) и электролитов (солей) в организм, особенности их усваивания организмом, распределения во внутренних органах, тканях, средах, а также процессы их выведения из организма.

О том, что человек на половину и более состоит из воды известно нам из школьных учебников. Интересно, что количество жидкости в организме человека разнится и определяется такими факторами как возраст, масса жира и количество тех же электролитов. Если новорожденный состоит из воды на 77%, то взрослые мужчины - на 61%, а женщины - на 54%. Столь низкое количество воды в женском организме объясняется большим количеством жировых клеток в их строении. К старости количество воды в организме снижается еще ниже указанных показателей.

Общее количество воды в человеческом организме распределяется следующим образом:

  • 2/3 от общего числа отводится на внутриклеточную жидкость; связана с калием и фосфатом, являющимися катионом и анионом, соответственно;
  • 1/3 от общего числа - это внеклеточная жидкость; меньшая ее часть пребывает в сосудистом русле, а большая (сверх 90%) содержится в сосудистом русле, а также представляет интерстициальную или тканевую жидкость; катионом внеклеточной воды считается натрий, а анионом - хлориды и гидрокарбонаты.

Кроме того, вода в человеческом организме пребывает в свободном состоянии, удерживается коллоидами (вода набухания или связанная вода) или участвует в образовании/распаде молекул белков, жиров и углеводов (конституционная или внутримолекулярная вода). Разные ткани характеризуются различным соотношением свободной, связанной и конституционной воды.

По сравнению с плазмой крови и межклеточной жидкостью тканевая жидкость в клетках отличается более высоким содержанием ионов калия, магния, фосфатов и низкой концентрацией ионов натрия, кальция, хлора и ионов гидрокарбоната. Различие объясняется низкой проницаемостью капиллярной стенки для белков. Точная регуляция водно-солевого обмена у здорового человека позволяет поддерживать не только постоянный состав, но и постоянный объем жидкостей тела, сохраняя практически одну и ту же концентрацию осмотически активных веществ и кислотно-щелочное равновесие.

Регуляция водно-солевого обмена организмом происходит при участии нескольких физиологических систем. Специальные рецепторы реагируют на изменения концентрации осмотически активных веществ, электролитов, ионов и объема жидкости. Такие сигналы передаются в центральную нервную систему и лишь затем происходят изменения в потреблении или выделении воды и солей.

Выведение воды, ионов и электролитов почками контролируется нервной системой и рядом гормонов. В регуляции водно-солевого обмена участвуют и вырабатываемые в почке физиологически активные вещества - производные витамина D, ренин, кинины и др.

Регуляция обмена калия в организме осуществляется ЦНС при участии ряда гормонов, кортикостероидов, в частности альдостерона и инсулина.

Регуляция обмена хлора зависит от работы почек. Из организма ионы хлора выводятся в основном с мочой. Количество экскретируемого хлорида натрия зависит от режима питания, активности реабсорбции натрия, состояния канальцевого аппарата почек, кислотно-щелочного состояния и др. Обмен хлоридов тесно связан с обменом воды.

Что считается нормой водно-солевого баланса?

Множество физиологических процессов в организме зависит от соотношения в нем количества жидкости и солей. Известно, что на 1 килограмм своего веса человек за сутки должен получать 30 мл воды. Такого её количества будет достаточно, чтобы снабдить организм минеральными веществами, разлиться вместе с ними по сосудам, клеткам, тканям, суставам нашего организма, а также растворить и вымыть наружу продукты жизнедеятельности. В среднем число потребляемой за сутки жидкости редко превышает 2,5 литра, такой объем может образоваться приблизительно следующим образом:

  • из пищи - до 1 литра,
  • путем питья простой воды - 1,5 литра,
  • образование оксидационной воды (вследствие окисления преимущественно жиров) - 0,3-0,4 литра.

Внутренний обмен жидкости определяется балансом между количеством ее поступления и выделения за определенный период времени. Если за сутки организму требуется до 2,5 литров жидкости, то приблизительно то же ее количество из организма и выводится:

  • через почки - 1,5 литра,
  • путем потоотделения - 0,6 литра,
  • выдыхаемая с воздухом - 0,4 литра,
  • выделяемая с калом - 0,1 литра.

Регуляция водно-солевого обмена осуществляется комплексом нейроэндокринных реакций, нацеленных на поддержание стабильности объема и осмотического давления внеклеточного сектора и, что особенно важно, плазмы крови. Хоть механизмы коррекции этих параметров и автономны, но оба они чрезвычайно важны.

Вследствие такой регуляции обеспечивается поддержание стабильного уровня концентрации электролитов и ионов в составе внутриклеточной и внеклеточной жидкости. Основные катионы организма - это натрий, калий, кальций и магний; анионы - хлор, гидрокарбонат, фосфат, сульфат. Их нормальное число в плазме крови представлено следующим образом:

  • натрий - 130-156 ммоль/л,
  • калий - 3,4-5,3 ммоль/л,
  • кальций - 2,3-2,75 ммоль/л,
  • магний - 0,7-1,2 ммоль/л,
  • хлор - 97-108 ммоль/л,
  • гидрокарбонаты - 27 ммоль/л,
  • сульфаты - 1,0 ммоль/л,
  • фосфаты - 1-2 ммоль/л.

Нарушения водно-солевого обмена

Нарушения водно-солевого обмена проявляются:

  • накоплением жидкости в организме или ее дефицитом,
  • образованием отеков,
  • понижением или повышением осмотического давления крови,
  • нарушением электролитного баланса,
  • уменьшением или увеличением концентрации отдельных ионов,
  • изменением кислотно-щелочного состояния (ацидоз или алкалоз).

Водный баланс в организме полностью определяется поступлением и выведением воды из организма. Нарушения водного обмена тесно взаимосвязаны с электролитным балансом и проявляются дегидратацией (обезвоживанием) и гидратацией (увеличением количества воды в организме), крайним выражением которой является отек:

  • отек - избыточное содержание жидкости в тканях организма и серозных полостях, в межклеточных пространствах, обычно сопровождающееся и нарушением электролитного баланса в клетках;
  • дегидратация , будучи недостатком воды в организме, разделяется на:
    • дегидратацию без эквивалентного количества катионов, тогда ощущается жажда, а вода из клеток поступает в интерстициальное пространство;
    • дегидратацию с потерей натрия, происходит из экстрацеллюлярной жидкости и жажда обычно не ощущается.

Нарушения водного баланса имеют место, и когда уменьшается (гиповолемия) или увеличивается (гиперволемия) объем циркулирующей жидкости. Последнее нередко случается за счет гидремии, повышения содержания воды в крови.

Знание патологических состояний, при которых меняется ионный состав плазмы крови или концентрация в ней отдельных ионов, важно для дифференциальной диагностики различных заболеваний.

Нарушения обмена натрия в организме представлены его недостатком (гипонатриемией), избытком (гипернатриемией) или изменениями в распределении по организму. Последнее в свою очередь может происходить при нормальном или измененном количестве натрия в организме.

Дефицит натрия разделяют на:

  • истинный - связан с утратой и натрия, и воды, что имеет место при недостаточном поступлении поваренной соли, обильном потоотделении, при обширных ожогах, полиурии (например, при хронической почечной недостаточности), кишечной непроходимости и других процессах;
  • относительный - развивается на фоне избыточного введение водных растворов со скоростью, превышающей выделение воды почками.

Избыток натрия различают аналогичным образом:

  • истинный - имеет место при введении больным солевых растворов, повышенном потреблении поваренной соли, задержке выведения натрия почками, избыточной продукции или длительном введении извне минеральных и глюкокортикоидов;
  • относительный - наблюдается при обезвоживании и влечет за собой гипергидратацию и развитие отеков.

Нарушения обмена калия, на 98% находящегося во внутриклеточной и на 2% во внеклеточной жидкости, представлены гипо- и гиперкалиемией.

Гипокалиемия наблюдается при избыточной продукции или введении извне альдостерона, глюкокортикоидов, обусловливающих избыточную секрецию калия в почках, при внутривенном введении растворов, недостаточном поступлении калия в организм с пищей. Это же состояние вероятно при рвоте или поносах, поскольку калий выделяется с секретами желудочно-кишечного тракта. На фоне такой патологии развивается дисфункция нервной системы (сонливость и утомляемость, невнятность речи), снижается мышечный тонус, ослабевает моторика пищеварительного тракта, артериальное давление и пульс.

Гиперкалиемия оказывается следствием голодания (когда происходит распад белковых молекул), травм, снижения объема циркулирующей крови (при олиго- или анурии), избыточном введении растворов калия. Сообщает о себе мышечной слабостью и гипотензией, брадикардией вплоть до остановки сердца.

Нарушения в соотношении магния в организме опасны, поскольку минерал активирует множество ферментных процессов, обеспечивает мышечное сокращение и прохождение нервных импульсов по волокнам.

Недостаток магния в организме случается при голодании и снижении абсорбции магния, при свищах, диарее, резекции желудочно-кишечного тракта, когда магний уходит с секретами ЖКТ. Еще одним обстоятельством выступает чрезмерная секреция магния вследствие поступления в организм лактата натрия. В самочувствии это состояние определяется слабостью и апатией, нередко сочетается с дефицитом калия и кальция.

Избыток магния считается проявлением нарушенной его секреции почками, усиленного распада клеток при хронической почечной недостаточности, диабете, гипотиреозе. Проявляется нарушение снижением артериального давления, сонливостью, угнетением дыхательной функции и сухожильных рефлексов.

Нарушение обмена кальция представлены гипер- и гипокальциемией:

  • гиперкальциемия - типичное следствие избыточного введения витамина D в организм, вероятно из-за усиленной секреции в кровь соматотропного гормона, гормонов коры надпочечников и щитовидки при болезни Иценко-Кушинга, тиреотоксикозе;
  • гипокальциемия отмечается при заболеваниями почек (хроническая почечная недостаточность, нефрит), при ограничении секреции в кровь гормонов паращитовидных желез, уменьшении содержания альбумина в плазме, поносе, дефиците витамина D, рахите и спазмофилии.

Восстановление водно-солевого обмена

Нормализация водно-солевого обмена проводится фармацевтическими препаратами, разработанными для коррекции содержания воды, электролитов и ионов водорода (определяющих КЩС). Эти основные факторы гомеостаза поддерживаются и регулируются взаимосвязанной работой дыхательной, выделительной и эндокринной систем и в свою очередь определяют эту же работу. Любые даже незначительные изменения содержания воды или электролитов могут привести к серьезным, угрожающим жизни последствиям. Применяются:

  • - назначается в дополнение к основной терапии при сердечной недостаточности, инфаркте миокарда, нарушениях сердечного ритма (в т.ч. при аритмиях, вызванных передозировкой сердечных гликозидов), гипомагниемии и гипокалиемии; легко всасывается при приеме внутрь, выводится почками, переносит ионы калия и магния, способствует их проникновению во внутриклеточное пространство, где активно включается в процессы метаболизма.
  • - назначается при гастрите с повышенной кислотностью, язвенной болезни желудка и двенадцатиперстной кишки, метаболическом ацидозе, который случается при инфекциях, интоксикациях, сахарном диабете и в послеоперационном периоде; оправдано назначение при камнеобразовании в почках, при воспалительных заболеваниях верхних дыхательных путей, полости рта; быстро нейтрализует соляную кислоту желудочного сока и оказывает быстрый антацидный эффект, усиливает выделение гастрина с вторичной активацией секреции.
  • - показан при больших потерях внеклеточной жидкости или недостаточном ее поступлении (в случае токсической диспепсии, холеры, диареи, неукротимой рвоты, обширных ожогов) при гипохлоремии и гипонатриемии с обезвоживанием, при кишечной непроходимости, интоксикациях; оказывает дезинтоксикационное и регидратирующее, возмещает нехватку натрия при различных патологических состояниях.
  • - применяется для стабилизации показателей крови; связывает кальций и ингибирует гемокоагуляцию; увеличивает содержание натрия в организме, повышает щелочные резервы крови.
  • (РеоХЕС) - используется при операциях, острых кровопотерях, травмах, ожогах, инфекционных заболеваниях в качестве профилактики гиповолемии и шока; уместен при нарушениях микроциркуляции; способствует доставке и потреблению кислорода органами и тканями, восстановлению капиллярных стенок.

Организм человека выделяет в сутки 2,6 л Н 2 О за счёт испаре­ния через кожу, с мочой, калом, выдыхаемым воздухом. Между тремя основными бассейнами Н 2 О в организме существует непрерывный интен­сивный обмен. Например, перемещение жидкости (путём диффузии) через стенки капилляров в теле человека составляет около 1500 л в 1 мин. В растительных организмах обмен воды идёт интенсивнее, чем в организмах животных и человека. Например, в течение вегетационного периода одно растение кукурузы или подсолнечника испаряет до 200 кг Н 2 О. Вода непрерывно доставляется к тканям и отводится от них, прони­кает в клетки и обратно из них через поры клеточных мембран диамет­ром 3-4 Å. Время полуобмена воды вклетках ряда тканей составляет 30-90 с, т.е. гораздо больше, чем для органических молекул или ионов.

Основными параметрами жидкой среды организма являются ос­мотическое давление (Р), рН и объём внеклеточной жидкости. Осмотиче­ское давление и рН внеклеточной жидкости и плазмы крови одинаковы, они также одинаковы для различных органов. С другой стороны, рН мо­жет быть различным внутри клеток различных типов и даже в различных субклеточных структурах, что объясняется особенностями метаболизма в различных органах и органоидах. Однако значение рН, характерное для данного типа клеток, постоянно; снижение или повышение его приводит к нарушению функций клеток.

Поддержание постоянства внутриклеточной среды обеспечива­ется постоянством осмотического давления, рН и объёма внеклеточной жидкости. В свою очередь, постоянство параметров внеклеточной жид­кости определяется действием почек и системы гормонов, регулирующих их функцию.

Регуляция осмотического давления и объёма внеклеточной жидкости

Осмотическое давление внеклеточной жидкости зависит от соли NaCl, которая в этой жидкости в наибольшей концентрации. Поэтому ос­новной механизм регуляции осмотического давления связан с изменени­ем скорости выделения почками либо Н 2 О, либо NaCl, вследствие чего меняется концентрация. NaCl в жидкостях тканей, а значит и осмотиче­ское давление. Регуляция объёма внеклеточной жидкости осуществляет­ся за счёт одновременного изменения скорости выделения и Н 2 Ои NaCl. Катионы Na + вызывают накопление воды в клетках и тканях, а катионы К + и Са +2 оказывают противоположное действие. Выделение воды и NaCl почками регулируется антидиуретическими гормонами - вазопрессином и альдостероном.

Вазопрессин, образуемый задней долей гипофиза в ответ на по­вышение осмотического давления внеклеточной жидкости, увеличивает скорость обратного всасывания воды из первичной мочи в почечных ка­нальцах. Тем самым уменьшается диурез, моча становится более концен­трированной. Вазопрессин, сохраняя необходимый объём жидкости в организме, не влияет на количество NaCl. Осмотическое давление вне­клеточной жидкости при этом уменьшается и устраняется стимул, кото­рый вызвал выделение вазопрессина.

Альдостерон, вырабатываемый в коре надпочечников при сни­жении концентрации NaCl в крови, увеличивает скорость реабсорбции ионов Na + (NaCl) в канальцах нефронов почек. В результате действия альдостерона NaCl задерживается в организме и устраняется стимул, вызвавший секрецию альдостерона. Избыточная секреция альдостерона и соответственно повышение концентрации NaCl приводит к повышению осмотического давления внеклеточной жидкости. В ответ на это усилива­ется секреция вазопрессина, который задерживает в организме воду. В результате накапливаются и NaCl, и Н 2 О: объём внеклеточной жидкости увеличивается при сохранении нормального осмотического давления. При увеличении объема внеклеточной жидкости повышается кровяное давление, эту форму гипертонии называют почечной.

Значительное уменьшение объёма внеклеточной жидкости мо­жет стать причиной нарушения кровоснабжения тканей. При этом нару­шаются функции всех органов, прежде всего головного мозга: возникает состояние шока.

Альдостерон и вазопрессин регулируют водно-солевой обмен на уровне органа - почек. Однако само соотношение в организме этих гор­монов регулируется центральной нервной системой (см. главу 16).

Регуляция рН

Регуляция рН обеспечивается избирательным выделением ки­слот или щелочей с мочой; рН мочи поэтому может изменяться в преде­лах 4,6-8,0.

Значение рН внеклеточной жидкости в норме равно 7,36-7,44. Пределы отклонения рН от нормы, совместимые с жизнью, до.7,0 при ацидозе, и до 7,8 при алкалозе.

Постоянство рН поддерживается буферными системами внекле­точной жидкости, изменением лёгочной вентиляции и скоростью выделе­ния кислот через почки. Главным буфером внеклеточной жидкости слу­жит система:

(НСОз)¯ + Н + ↔ Н 2 СО 3 ↔ H 2 O + СО 2 .

Значение рН определяется отношением [НСО 3 ¯] / . При рН 7,4 оно равно 20:1; уменьшение этого отношения приводит к снижению рН (аци­доз), увеличение - к повышению (алкалоз). Значение отношения [НСО 3 ¯] / зависит от изменения как [НСО 3 ¯], так и . Концентрация СО 2 зависит от скорости удаления его через лёгкие, поэтому при нарушениях дыхательной функции могут возникать дыхательный ацидоз или алкалоз. Концентрация ионов (НСОз)¯ меняется главным образом в результате метаболических нарушений, например, уменьшается при повышении концентрации кетонов (метаболический ацидоз).

Почки участвуют в регуляции кислотно-щелочного равновесия, изменяя выделение ионов водорода Н + . Они выделяются либо в составе недиссоциированных кислот, либо в составе NH 4 + . Кроме того клетки почек могут поставлять в кровь дополнительные количества иона (НСОз)¯, образующегося в результате- окисления метаболитов:

метаболиты + О 2 → СО 2

СО 2 + Н 2 О ↔» H 2 CO 3 ↔ (HCO 3)¯ +Н + .

Ионы Н + выводятся из клеток в канальцы нефрона и выделяются с мо­чой, а ионы (НС0 3)¯ из почечных клеток в форме NaHCO 3 переходят в кровь, понижая её кислотность (компенсация ацидоза).

Гормоны непосредственно не участвуют в регуляции рН внекле­точной жидкости, однако при ряде заболеваний эндокринной системы возникают нарушения кислотно-щелочного равновесия, например, аци­доз при диабете.

Минеральный обмен

Минеральные вещества

Минеральные (неорганические) вещества находятся в клетках в виде ионов. В клетках и внеклеточных жидкостях организма человека основными катионами являются Na + , К + , Са 2+ , Mg 2+ , среди анионов пре­обладают РО 3 ¯, CI¯, SJ 4 2- , HCO 3 ¯. Суммарный положительный заряд ка­тионов равен суммарному отрицательному анионов, хотя и допускаются некоторые колебания в ту или иную сторону. Для достижения электро­нейтральности организму не хватает неорганических анионов. Это ком­пенсируется анионами органических кислот и кислых белков. Вне клетки для этого требуется ~12% органических анионов, а внутри клетки ~27%. Концентрации главных катионов и анионов в межклеточной жид­кости и плазме крови почти не отличаются. Основным катионом во вне клеточной среде является ион Na + (свыше 90% от общей концентрации всех катионов), а из анионов - CI¯, и НСО 3 ¯ (соответственно около 70 и 18%). Внутри клетки преобладают катионы К + (75%) и анионы РО 3 ¯(50%). В табл.18 приведены основные элементы, встречающиеся в организме человека, и указаны их содержание и биологическая роль.

Таблица18. Содержание и биологическая роль некоторых микроэлементов в организме человека

Эле­мент Критические ткани с пре­имуществен­ный накопле­нием элемента Биологическая роль Общее содержание элемента
в цельной крови, г/100 мл мас. доля в сухом веществе
Бор 5 В Щитовидная железа, костный мозг Участвует в углеводном обмене, усиливает действие инсулина, уменьшает действие витаминов В 2 и В 12 , а также кишечной амилазы и протеина, тормозит окисление адреналина 1·10 -6 4·10 -5 n·10 -4 n·10 -5
Фтор 9 Р Костная ткань, зубы Участвует в формировании скеле­та, повышает устойчивость зубов к кариесу, стимулирует кроветворе­ние и иммунитет 1·10 -5 4,5·10 -5 n·10 -3 n·10 -5
Алю­ми­ний 13 А1 Печень, головной мозг, кости Способствует развитию и регене­рации эпителиальной, соедини­тельной и костной ткани; активи­рует ферменты; влияет на актив­ность пищеварительных желез; препятствует лро-никновению ионов металла внутрь протоплазмы 1·10 -6 4·10 -5 n·10 -4 n·10 -5
Кремний 14 Si Соединительная ткань, поджелудочная железа, почки, моз­жечок, воло­сы Влияет на функции поджелудочной железы и на эластич­ность кожи, ускоряет процесс образования рубцов 1,6·10 -2 n·10 -2 n·10 -4
Ва­на­дий 23 V Мало изуче­ны (кровь?) Участвуют в окислительно-восстановительных процессах, оказывает влияние на процессы дыхания и кроветворения - n·10 -4 n·10 -5
Хром 24 Cr Волосы, ногти Входит в активный центр фермента трипсина; активирует окислитель­ные процессы 35·10 -6 1,2·10 -5 n·10 -4 n·10 -6

Мар­га­нец 25 Мn Кости, пе­чень, щито­видная железа, гипофиз Участвует в формировании скелета в иммунных реакциях, в кроветво­рении и тканевом дыхании; влияет на активность многих витаминов, ферментов и гормонов до 2,5·10 -5 n·10 -4 n·10 -5
Железо 26 Fe Эритроциты, селезенка, печень Входит в состав гемоглобина, уча­ствует в кроветворении, дыхании и окислительно-восгановительных реакциях; недостаток Fe приводит к анемии 4·10 -3 n·10 -1 n·10 -2
Ко­бальт 27 Со Печень, кровь, селе­зенка, щито­видная железа, костная ткань, яич­ники, гипо­физ Участвует в синтезе ряда фермен­тов (глициндипептидазы, холинэстеразы, ацилазы), гормона щито­видной железы, витамина В 12 , гемоглобина и др.; стимулирует кроветворение, деятельность щи­товидной железы, регулирует углеводный обмен 3,9 ·10 -7 1,48·10 -6 (плазма) n·10 -5 n·10 -6
Ни­кель 28 Ni Поджелу­дочная железа печень, гипофиз, кожа, рого­вица глаза Активирует фермент ангидразу, влияет на окислительные процессы и углеводный обмен; входит в состав инсулина - n·10 -5 n·10 -2
Медь 29 Си Печень, кости, го­ловной мозг Входит в состав многих тканевых белков и ферментов (лактазы, тирозиназы, оксидазы и др.); по­вышает активность некоторых гормонов; участвует в кроветворе­нии, ферментном окислении, тка­невом дыхании, иммунных процес­сах, пигментации 6,9 ·10 -5 1,17·10 -4 n·10 -3 n·10 -4
Цинк 30 Zn Печень, предстательная же леза, сетчатка Входит в состав ряда тканевых белков и ферментов, активирует гормоны гипофиза, поджелудочной железы и половые; участвует в кроветворении и деятельности желез внутренней секреции, со­действует удалению из организма СО 2: при дефиците Zn - отстава­ние роста, выпадение волос, угне­тение половых функций 5 ·10 -4 1,275·10 -4 n·10 -2 n·10 -3

Мышьяк 33 Аs Печень, селезенка, почка, эрит­роциты Связан с гемоглобином эритроци­тов, в дозах до 0,5 мг улучшает кроветворение, усвоение азота и фосфора, ограничивает распад белков; в значительных дозах ядовит 8 ·10 -4 n·10 -4 n·10 -6
Се­лен 34 Se Печень, почки, селе­зенка, серд­це, роговые образова­ния, кровь Вступает во взаимодействие с белками крови - альбумином, гемо­глобином и глобулинами, а также с инсулином; повышает активность кофермента Q (убихинона); снижа­ет адреналиновую гипергликемию; в повышенных дозах ядовит - n·10 -5 n·10 -7
Бром 35 Br Головной мозг, щито­видная железа, гипофиз, яичники, почки Участвует в регуляции деятельно­сти нервной системы, коры надпо­чечников и половых желез; угнета­ет деятельность щитовидной желе­зы 2 ·10 -4 1,5·10 -2 n·10 -3 n·10 -4
Стронций 38 Sr Костная ткань Участвует в образовании костной ткани, усиливает активность фер­мента фосфатазы - n·10 -3 n·10 -3
Мо­либ­ден 42 Мо Печень, почки, над­почечники, белое веще­ство мозга, пигментная оболочка глаза Входит в состав тканевых белков и некоторых ферментов (ксантин-оксидазы, альдегид-оксидазы и др.); ускоряет рост, избыток Мо приво­дит к молибденовой подагре - n·10 -4 n·10 -6
Кад­мий 48 Cd Печень, почки Входит в состав инсулина и неко­торых ферментов, активирует аргиназу и амилазу, но тормозит действие редуктазы; влияет на работу печени Следы n·10 -3
Оло­во 48 Sn Костная ткань, пе­чень, легкие Обязательная составная часть костей (0,08%); печени (0,006%) и легких (0,045%), биологические функции олова не вполне ясны 1 ·10 -5 5·10 -5 n·10 -3 n·10 -5

Для всех живых организмов характерна разница (градиент) кон­центраций основных неорганических ионов между внутриклеточной и внеклеточной жидкостями, которые разделены клеточной мембраной. Мембрана обладает избирательной проницаемостью по отношению к отдельным ионам и вообще непроницаема для крупных макромолекул, таких как, например, белки.

Основу здоровья человека составляет обмен веществ. В организме человека каждую секунду протекает множество химических реакций синтеза и расщепления сложных компонентов с накоплением продуктов этих реакций. И все эти процессы протекают в водной среде. Человеческий организм состоит из воды в среднем на 70%. Водно-солевой обмен – это важнейший процесс, который во многом определяет сбалансированную работу всего организма. Нарушение водно-солевого баланса может стать одновременно и причиной, и следствием ряда системных заболеваний. Лечение нарушений водно-солевого обмена должно быть комплексным и включать в себя изменение образа жизни.

Полезно использовать народные снадобья для нормализации обмена веществ и выведения отложенных солей. Терапия народными средствами не оказывает негативные побочные действия на организм человека. Напротив, целебные свойства лекарственных растений укрепляют здоровье и положительно действуют на все системы органов человека.

  • Вода в организме человека

    Итак, тело человека на 70% состоит из воды. Из этих 70% на долю внутриклеточной жидкости приходится 50%, на долю внеклеточной жидкости (плазма крови, межклеточная жидкость) приходится 20%. По своему водно-солевому составу вся межклеточная жидкость примерно одинакова, и отличается от внутриклеточной среды. Внутриклеточное содержимое отделено от внеклеточного при помощи мембран. Эти мембраны регулируют транспорт ионов, но свободно проницаемы для воды. Причем вода может свободно поступать как в, так и из клетки. Все химические реакции, которые обеспечивают метаболизм человека, протекают внутри клеток.

    Таким образом, концентрация солей внутри клеток и в межклеточном пространстве примерно одинакова, но различается солевой состав.

    Концентрация ионов и количество доступной воды является очень важным для нормального функционирования организма человека. Концентрация солей внутри клеток и во внеклеточной жидкости – величина постоянная и она поддерживается, не смотря на то, что в организм человека с пищей постоянно попадают различные соли. Водно-солевой баланс поддерживается работой почек, а регулируется центральной нервной системой.

    Почки регулируют выведение или задержку воды и ионов. Процесс этот зависит от концентрации солей в организме. Кроме почек, выведение жидкости и электролитов происходит через кожу, легкие, кишечник.

    Потеря воды через кожные покровы и легкие происходит в ходе терморегуляции для охлаждения организма. Процесс этот трудно контролировать. Он зависит от температуры и влажности внешней среды, интенсивности физической работы, психоэмоционального состояния и других факторов.

    Считается, что при умеренной температуре взрослый человек теряет через кожу и легкие до полутора литров воды в сутки. Если восполнение жидкости не происходит (человек недостаточно пьет), то потеря уменьшится до 800 мл, но совсем не исчезнет. Увеличивается потеря жидкости этим путем при лихорадке.

    Нарушения водно-солевого баланса

    Существует несколько типов нарушений водно-солевого обмена.

    1. Нарушение водного обмена:
      • гипогидратация – недостаток жидкости;
      • гипергидратация – избыточное количество жидкости.
    2. Нарушения кислотно-щелочного баланса:
      • (закисление организма);
      • алкалоз (защелачивание).
    3. Нарушение минерального обмена.

    Нарушение водного обмена

    Обезвоживание . В начале процесса происходит потеря только внеклеточной жидкости. При этом происходит сгущение крови и повышение концентрации ионов в кровяном русле и межклеточном пространстве. Это ведет к повышению осмотического давления внеклеточной жидкости, и, чтобы скомпенсировать это состояние, в это пространство часть воды направляется из клеток. Обезвоживание становится глобальным.

    Потеря воды происходит через легкие, кожные покровы, кишечник. Привести к обезвоживанию состоянию может:


    Гипергидратация . Это состояние развивается при повышенном количестве воды в организме. Избыток воды откладывается в межклеточном пространстве или в виде асцита в брюшной полости. Концентрация солей при этом не нарушается. В этом состоянии у человека возникают периферические отеки, и увеличивается масса тела. Гипергидратация вызывает нарушения нормальной работы сердца, может спровоцировать отек мозга.

    Причины изотонической гипергидратации:

    • избыточное введение физиологического раствора во время медицинских процедур;
    • почечная недостаточность;
    • сердечная недостаточность;
    • избыточная секреция гормона коры надпочечников;
    • цирроз печени с асцитом в брюшной полости.

    Нарушение кислотности

    В организме здорового человека постоянно поддерживается кислотно-щелочной баланс. Кислотность различных сред организма отличается, но поддерживается в весьма узких рамках. Существует взаимная связь между обменом веществ и поддержанием нормальной кислотности: накопление кислых или щелочных продуктов метаболизма зависит от обменных реакций, нормальное протекание которых, в свою очередь, зависит от кислотности среды. Нарушения кислотно-щелочного баланса могут быть вызваны рядом заболеваний или просто неправильным образом жизни.

    Ацидоз . Это состояние характеризуется накоплением кислых продуктов реакций и закислением организма. Такое состояние может возникнуть по ряду причин:

    • голодание и гипогликемия (недостаток глюкозы);
    • длительная рвота или понос;
    • нарушение дыхания и недостаточное выведение углекислого газа.

    Симптомы этого состояния:

    • нарушение дыхания, дыхание становится глубоким и частым;
    • симптомы интоксикации: тошнота и рвота;
    • потеря сознания.

    Алколоз . Это изменение кислотно-щелочного баланса организма в сторону накопления щелочных катионов. Это может быть связано с метаболическими нарушениями кальциевого обмена, некоторыми инфекционными процессами, длительной обильной рвотой. Также такое состояние возникает при нарушении дыхания и гипервентиляции легких, когда происходит усиленное выделение углекислого газа.
    Симптомы алколоза:

    • дыхание становится поверхностным;
    • повышенная нервно-мышечная возбудимость, спазмы;
    • потеря сознания.

    Нарушение минерального обмена

    Калиевый обмен . Иона калия являются очень важными для нормального функционирования организма. С помощью этих ионов происходит транспорт веществ в и из клетки, участвует калий в проведении нервных импульсов и нервно-мышечной регуляции.

    Недостаток калия может возникнуть при длительной рвоте и диарее, сердечной и почечной недостаточности, неграмотном введении кортикостероидов и различных метаболических нарушениях.
    Симптомы гипокалиемии:

    • общая мышечная слабость, парезы;
    • нарушение сухожильных рефлексов;
    • возможно удушение при нарушении работы дыхательных мышц;
    • нарушение сердечной деятельности: снижение артериального давления, аритмия, тахикардия;
    • нарушение процесса дефекации и мочеиспускания, вызванные атонией гладкой мускулатуры внутренних органов;
    • угнетение и потеря сознания.

    Повышение содержания калия может быть вызвано избыточным его введением во время медицинских процедур или нарушением нормальной работы надпочечников, почек, сердца. При этом у человека также нарушается нервно-мышечная регуляция, возникают парезы и параличи, сбои сердечного ритма, больной может потерять сознание.

    Хлор и натрий .
    Хлорид натрия или обычная кухонная соль – это основное вещество, которое ответственно за регуляцию солевого баланса. Ионы натрия и хлора – это основные ионы межклеточной жидкости, и организм поддерживает их концентрацию в определенных границах. Участвуют эти ионы в межклеточном транспорте, нервно-мышечной регуляции и проведении нервного импульса. Метаболизм человека способен поддерживать концентрацию ионов хлора и натрия вне зависимости от количества потребляемой с пищей солью: избыток хлорида натрия выводится почками и с потом, а недостаток восполняется из подкожной жировой клетчатки и других органов.

    Недостаток натрия и хлора может возникать при длительной рвоте или поносе, а также у людей, придерживающихся длительной бессолевой диеты. Часто недостаток ионов хлора и натрия сопровождается сильным обезвоживанием.

    Гипохлоремия. Хлор теряется при длительной рвоте вместе с желудочным соком, содержащим соляную кислоту.

    Гипонатриемия также развивается при рвоте и поносе, но также может быть вызвана почечной, сердечной недостаточностью, циррозом печени.
    Симптомы недостатка ионов хлора и натрия:

    • нарушение нервно-мышечной регуляции: астения, судороги, парезы и паралич;
    • головная боль, головокружение;
    • тошнота и рвота;
    • угнетение и потеря сознания.

    Кальций . Ионы кальция необходимы для сокращения мышц. Также этот минерал – это основной компонент костной ткани. Гипокальциемия может возникнуть при недостаточном поступлении этого минерала с пищей, нарушении деятельности щитовидной и паращитовидных желез, недостатке витамина D (редкое пребывание на солнце). При недостатке кальция возникают судороги. Длительная гипокальциемия, особенно в детском возрасте, приводит к нарушению формирования скелета, склонности к переломам.

    Избыток кальция – это редкое состояние, которое возникает при избыточном введении препаратов кальция или витамина D во время медицинских процедур или повышенной чувствительности к этому витамину. Симптомы этого состояния: повышение температуры тела, рвота, сильная жажда, в редких случаях – судороги.

    Витамин D – это витамин, присутствие которого необходимо для процесса всасывания кальция из пищи в кишечнике. Концентрация этого вещества во многом определяет насыщение организма кальцием.

    Влияние образа жизни

    Нарушения водно-солевого баланса могут возникать не только вследствие различных заболеваний, но и при неправильном образе жизни и питании. Ведь именно от питания человека, от его жизненного уклада зависит скорость метаболизма и накопление тех или иных веществ.

    Причины нарушений:

    • неактивный, малоподвижный образ жизни, сидячая работа;
    • отсутствие занятия спортом, выполнения активных физических упражнений;
    • вредные привычки: злоупотребление алкоголем, курение, употребление наркотиков;
    • несбалансированное питание: избыточное употребление белковой пищи, соли, жиров, недостаток свежих овощей и фруктов;
    • нервное напряжение, стресс, депрессия;
    • неупорядоченный рабочий день, отсутствие полноценного отдыха и сна, хроническое утомление.

    Малоподвижный образ жизни и отсутствие занятий спортом приводят к тому, что у человека замедляется метаболизм, и побочные продукты реакций не выводятся, а накапливаются в органах и тканях в виде солей и шлаков. Несбалансированное питание приводит к избытку или недостатку поступления тех или иных минералов. Кроме того, при расщеплении, например, белковой пищи образуется большое количество кислых продуктов, которые вызывают смещение кислотно-щелочного баланса.

    В любом случае, образ жизни человека оказывает непосредственное влияние на его здоровье. Вероятность развития обменных нарушений и системных заболеваний гораздо ниже у людей, которые ведут здоровый образ жизни, полноценно питаются и занимаются спортом.

    Лечение водно-солевого дисбаланса

    Нарушения водно-солевого баланса чаще всего проявляются в виде изменения нормальной кислотности сред организма и накопления солей. Процессы эти происходят медленно, симптомы нарастают постепенно, часто человек даже не замечает, как ухудшается его состояние. Лечение нарушений водно-солевого обмена – лечение комплексное: кроме приема лекарственных снадобий необходимо изменить образ жизни, придерживаться диеты.

    Лечебные средства нацелены на выведение излишка солей из организма. Откладываются соли преимущественно в суставах или в почках и желчном пузыре в виде камней. Народное лечение солевых отложений – это мягкое воздействие на организм. Такая терапия не оказывает побочных эффектов и способствует комплексному восстановлению здоровья. Однако прием лекарственных средств должен быть длительным и систематическим. Только в этом случае можно получить изменения. Улучшения будут нарастать постепенно, но по мере очищения организма от солевых отложения и нормализации обмена веществ человек будет чувствовать себя все лучше и лучше.

    Народные рецепты:

    1. Дикая морковь. В терапии используют соцветие «зонтик» этого растения. Одно соцветие нарезают и запаривают в 1 стакане кипятка, настаивают час, затем фильтруют. Принимают по ¼ стакана дважды в день. Лечение борется с защелачиванием организма и нормализует водно-солевой баланс.
    2. Виноград. Используют молодые побеги («усики») этого растения. В 200 мл кипятка запаривают 1 ч. л. побегов, настаивают 30 минут и фильтруют. Принимают по ¼ стакана 4 раза в сутки. Лечение длится месяц. Такое средство помогает вывести оксалаты.
    3. Лимон и чеснок. Измельчают три лимона вместе с кожурой и 150 г чеснока, все смешивают, добавляют 500 мл холодной кипяченой воды и настаивают сутки. После этого процеживают и отжимают сок. Хранят снадобье а холодильнике и принимают по ¼ стакана один раз в день утром до завтрака. Снадобье выводит избыток солей.
    4. Травяной сбор №1. Нарезают и смешивают 1 часть травы спорыша и по 2 части листьев земляники и смородины. В 1 стакане кипятка запаривают 1 ст. л. такого сбора, настаивают полчаса, затем процеживают. Принимают по половине стакана трижды в день. Лечение длится месяц. Такое средство помогает вывести уратные соли и способствует лечению мочекаменной болезни.


  • Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
    ПОДЕЛИТЬСЯ: