Про заболевания ЖКТ

Влияние нервной системы на реакции метаболизма (а через них - на характер и интенсивность функционирования и пластических процессов) различных органов и тканей (в том числе самих нервных образований) осуществляется либо самим фактом иннервации (регуляция функциональной активности и кровоснабжения иннервируемых структур), либо при помощи механизмов нейротрофического контроля.

Антиноцицептивная система

Концепция нейротрофического контроля заключается в постулировании взаимного регулирования функционального состояния как элементов нервной системы (нейронные пути и сети), так и иннервируемых ими ненервных структур (например, мышечных). Это реализуется при помощи воздействий, отличающихся от присущих нервной системе стандартных механизмов (распространение ПД по аксонам → секреция нейромедиатора в синаптическую щель → взаимодействие нейромедиатора с его рецепторами на постсинаптической мембране → постсинаптический электрогенез).

Механизмы нейротрофического контроля. Нейродистрофический процесс.

В рамках концепции нейротрофического контроля рассматривается несколько возможных механизмов его реализации.

Изменение импульсной активности в аксонах (частота ПД, интервалы между ними). Предполагается, что паттерны (от англ. pattern - образец) импульсов имеют информационное значение и изменяют проницаемость мембран клеток для ионов.

Образование специальных нейротрофических факторов («трофогенов»), транспортируемых по отросткам нервных клеток, секретируемых в синаптическую щель и взаимодействующих с постсинаптическими партнёрами.

Изменение величины ПП, ПД и,как следствие, уровня функционирования постсинаптического партнёра (старая идея атрофии органа от неупотребления).
Сохранение интактной синаптической передачи - состояния иннервированности . Развитие денервационного синдрома после повреждения нерва или блокады аксонного транспорта в нём является серьёзным следствием нарушения этого механизма.

Вероятные механизмы влияния нервной системы на обмен веществ в клетках.

Нейродистрофический процесс

Нарушение трофической функции нервной системы составляет патогенетическую основу нейродистрофического процесса. Нейродистрофический процесс может возникать как в периферических органах и тканях, так и в самой нервной системе. В типичном варианте нейродистрофический процесс развивается при денервационном синдроме.

Денервационный синдром.

Проявления денервационного синдрома (на примере денервации скелетной мышцы) представлены на рисунке.

Дисферментоз. Происходят изменения нормального спектра ферментов в клетке, их экспрессии, активности, появления или исчезновения изоферментов.
- «Эмбрионизация» обмена веществ. Реакции метаболизма приобретают свойства и признаки, характерные для ранних этапов развития организма (например, снижение активности процессов окисления, доминирование реакций анаэробного гликолиза, активация пентозного цикла).
- Ультраструктурные изменения клеточных элементов (прежде всего - мембран). При электронно-микроскопических исследованиях находят признаки набухания и разрушения крист митохондрий, лабилизации мембран лизосом, нарушения селективной проницаемости плазмолеммы.

Дистрофии и дисплазии различного характера вследствие нарушений экспрессии отдельных генов и расстройств метаболизма.

Действие аутоагрессивных AT, Т-клеток, макрофагов.

Гиперсенситизация денервированных структур к недостающему нейромедиатору. Так, в скелетных мышечных волокнах увеличен синтез рецепторов ацетилхолина. Рецепторы встраиваются не только в плазмолемму области постсинаптической мембраны, но и по всей поверхности мышечного волокна.

Типовые расстройства в постсинаптических структурах при нарушении аксонного транспорта.

Нарушения нейротрофической регуляции других органов при их денервации выражены в меньшей степени. При этом отмечается инертность механизмов гуморального контроля. Это сужает диапазон компенсаторных возможностей денервированного органа, особенно в условиях его функциональной нагрузки или повреждения. Такие же особенности наблюдаются и в трансплантированных органах (сердце, почки, печень).

Существенно, что при денервации снижается резистентность денервированного органа или ткани к повреждающим факторам: инфекции, механической травме, температурным и другим воздействиям.

Деафферентация.

Нейтрофические расстройства возникают не только при денервационном синдроме. Они развиваются при повреждении и афферентных структур нервной системы. Так, деафферентация, вызванная перерезкой чувствительного нерва, может приводить к не менее выраженным трофическим нарушениям в органе, чем его эфферентная денервация.
Нейродистрофические процессы являются компонентом практически всех форм патологии человека, обусловленных как функциональными расстройствами, так и органическими повреждениями нервной системы. Они проявляются не только изменениями функциональной активности органов, но и грубыми отклонениями в их структуре (атрофией, эрозиями, изъязвлениями, малигнизацией).

===============================================================================

Нейродистрофический процесс

Нейродистрофический процесс возникает в разных органах и тканях (в том числе и в самой нервной системе) в результате выпадения или нарушения различных нервных влияний со стороны афферентных, ассоциативных и эфферентных нейронов (их тел и отростков) соматической и автономной нервной системы.

В основе нейродистрофического процесса лежат следующие изменения.

Возникают расстройства синтеза, секреции и/или действия нейромедиаторов, комедиаторов (веществ, выделяющихся вместе с нейромедиаторами и играющих роль нейромодуляторов, которые обеспечивают регуляцию рецепторных и мембранных эффектов и участвуют в регуляции метаболических процессов) и трофогенов (макромолекулярных веществ, главным образом пептидов, осуществляющих собственно трофические влияния на нервные клетки и иннервируемые ими ткани). Трофогены (трофины, нейротрофические факторы) образуются главным образом в нейронах (поступают в клетки-мишени, движутся антероградным способом с аксоплазматическим током нейрона), глиальных и шванновских клетках, а также в клетках-мишенях тканей и органов (движутся ретроградным способом). Трофогены могут образовываться из белков крови и клеток иммунной системы. Они обеспечивают не только разнообразные синаптические, но и несинаптические межклеточные взаимодействия, индуцируют трофико-плас-тические и структурные процессы, дифференцировку, рост, развитие как нейронов, так и различных иннервируемых ими клеточно-тканевых структур.

Могут образовываться патотрофогены (вещества, образующиеся как в нейронах, так и в периферических тканях различных эффекторных структур). Патотрофогены индуцируют устойчивые патологические изменения в регулируемых нейронами исполнительных клеточно-тканевых структурах. Обычно они возникают при значительных, грубых повреждениях не только нейронов, но и регулируемых ими тканей, сопровождающихся нарушениями их структурных, метаболических и физиологических процессов. Нейродистрофический процесс усиливается при возникновении расстройств гемо- и лимфоциркуляции, энергетического и пластического видов обмена и различных трофических нарушений, возникающих как при органических (необратимых) повреждениях разных структур нейронов и нервных центров, так и при функциональных (обратимых) их изменениях (например, при неврозах).

==============================================================

Нейродистрофический процесс - это комплекс трофических нарушений в органах и тканях, возникающий при повреждении периферических нервов или других структур нервной системы. Особенно тяжелые нарушения развиваются при повреждении афферентных волокон и нервов.

Нейродистрофический процесс характеризуется следующими признаками :

1) структурными нарушениями - развитием язв на коже и слизистых оболочках, атрофией мышц, дистрофическими изменениями тканей, явлениями дегенерации и гибели клеток; 588

2) функциональными изменениями - повышением чувствительности денервированных структур к действию гуморальных факторов (закон Кеннона);

3) расстройствами обмена веществ - угнетением активности одних ферментов и повышением активности других, активацией биохимических процессов, характерных для эмбрионального периода развития.

В патогенезе нейрогенной дистрофии, развивающейся при травме периферического нерва, главную роль играют следующие факторы (по Н.Н.Зайко).

1. Прекращение поступления информации от денервированного органа в нервный центр (регионарный узел, спинной или головной мозг) и отсутствие корригирующих трофических влияний по сохранившимся нервам.

2. Прекращение выработки нервом нейрогормонов, в том числе и тех, которые приносятся к клетке посредством аксоплазматического тока.

3. Патологическая импульсация из центральной культи перерезанного нерва, усугубляющая нарушение функции нервных центров и возникшие на периферии нарушения обмена.

4. Проведение патологической импульсации перерезанным чувствительным нервом в обратном направлении (антидромно).

5. Изменения генетического аппарата клетки в денервированном органе и нарушение синтеза белков, приводящие к появлению веществ антигенной природы. Иммунная система при этом отвечает реакцией отторжения.

6. Неадекватные реакции, чаще всего повышенные, на биологически активные вещества, лекарственные препараты и другие гуморальные воздействия (закон денервации Кеннона). Например, после перерезание блуждающего нерва мышечная оболочка желудка становится более чувствительной к влиянию нервных медиаторов. Кроме того, в ней наблюдаются необычные изменения обмена веществ в ответ на действие некоторых гормонов.

7. Травмирующие воздействия среды (механическая травма, инфекция), способствующие более быстрому развитию трофических нарушений в денервированных тканях.

=======================================================

Осложнения нейротрофические. Повреждения спинною мозга сопровождаются значительной перестройкой функционирования различных тканей и органов, что включается в представление о травматической болезни спинного мозга. Особенно грубые нейротрофические нарушения (НН) возникают в тех тканях и органах, которые получают вегетативную иннервацию из поврежденных сегментов позвоночника - из так называемых вегетативных спинальных центров.

Существенные нейротрофические нарушения возникают в тканях, оказавшихся ниже уровня повреждения спинного мозга. Они не получают адекватную эфферентную иннервацию. Из них не поступает и афферентная импульсация в высшие отделы ЦНС (в ядра гипоталамуса, кору головного мозга), в результате чего нарушается обратная связь с периферией и они лишаются возможности оказывать оптимальную нейрогуморальную регуляцию деятельности указанных тканей.

Нейротрофические нарушения при позвоночно-спинномозговой травме обусловленны также спинальным шоком, который включает рефлекторный аппарат в сегментах спинного мозга, расположенных ниже повреждения и на 2-3 сегмента выше его. Известно, что продолжительные и выраженные нейротрофические нарушения наблюдаются при длительном спинальном шоке, который поддерживается в связи с неустраненным источником раздражения поврежденного мозга.

Особенно грубые нейротрофические нарушения бывают при анатомическом перерыве спинного мозга. Для этого вида поражения характерны так называемые твердые отеки нижних конечностей, гнойно-некротические и язвенные формы колитов, энтероколитов и гастритов, острые желудочно-кишечные кровотечения, нередко приводящие таких больных к смерти, пиелонефриты, циститы. Указанные нейротрофические осложнения позвоночно-спинномозговой травмы (ПСМТ) настолько характерны для анатомического перерыва спинного мозга, что используются в качестве дифференциально-диагностических критериев.

Менее грубые нейротрофические нарушения наблюдаются также при других формах ПСМТ. Нейротрофические изменения в миокарде, наклонность к деструктивным формам пневмонии, дисфункция печени, поджелудочной железы, желудка, кишечника - все эти расстройства должны учитываться клиницистом и соответствующим образом корригироваться медикаментозной терапией. Нужно помнить, что у больных с ПСМТ имеется тенденция к камнеобразованию и в желчных, и в мочевыводящих путях. Этому способствует нарушение эвакуации их содержимого, а также местные нейротрофические нарушения. Поэтому таким больным необходимо назначать не только заместительную терапию, но и средства, препятствующие камнеобразованию.

При повреждении шейного отдела спинного мозга синдром полного нарушения проводимости сначала проявляется вялой тетраплегией с выпадением сухожильных и периостальных рефлексов на руках и ногах, выпадением брюшных и кремастерных рефлексов, отсутствием всех видов чувствительности книзу от уровня повреждения спинного мозга и нарушением функций тазовых органов в виде стойкой задержки мочи и кала.

При синдроме частичного нарушения проводимости шейного отдела спинного мозга неврологические нарушения выражены менее грубо, отмечается диссоциация между степенью выпадения движений, чувствительностью и нарушением функций тазовых органов, а также рефлекторными нарушениями .

Повреждения шейного отдела спинного мозга сопровождаются параличом поперечно-полосатой мускулатуры грудной клетки, что приводит к грубым нарушениям дыхания, требующим нередко наложения трахеостомы и применения искусственной аппаратной вентиляции легких. Повреждение на уровне IV шейного сегмента наряду с этим приводит к параличу диафрагмы и, если срочно не осуществлен перевод больного на аппаратное дыхание, к его гибели.

Тяжесть состояния пострадавшего при повреждении шейного отдела спинного мозга часто усугубляет восходящий отек продолговатого мозга и появление бульбарных симптомов - расстройств глотания, брадикардии с последующей тахикардией, нистагма и, при неэффективности проводимой терапии, остановкой дыхания вследствие паралича дыхательного центра. Возникновение бульбарных симптомов сразу после травмы указывает на сочетанное повреждение одновременно шейного отдела спинного мозга и стволовых отделов головного мозга, что является неблагоприятным признаком.

При отсутствии анатомического перерыва спинного мозга его проводниковые функции постепенно восстанавливаются, появляются активные движения в парализованных конечностях, улучшается чувствительность, нормализуется функция тазовых органов.

При повреждении грудного отдела спинного мозга возникает вялый паралич (при менее грубом его повреждении - парез) мышц ног с выпадением брюшных рефлексов, а также сухожильных рефлексов на нижних конечностях. Нарушения чувствительности обычно носят проводниковый характер (соответствуют уровню повреждения спинного мозга), расстройства функций тазовых органов заключаются в задержке мочи и кала .

При повреждении верхнегрудного отдела спинного мозга возникает паралич и парез дыхательной мускулатуры, что приводит к резкому ослаблению дыхания. Повреждение на уровне III-V грудных сегментов спинного мозга нередко сопровождается нарушением сердечной деятельности.

При повреждении пояснично-крестцового отдела спинного мозга наблюдается вялый паралич мышц ног на всем их протяжении или мышц дистальных отделов, а также нарушаются все виды чувствительности ниже места повреждения. Одновременно выпадают кремастерные, подошвенные, ахилловы рефлексы, а при более высоких поражениях - и коленные. В то же время брюшные рефлексы сохраняются. Задержку мочи и кала нередко сменяет паралитическое состояние мочевого пузыря и прямой кишки, в результате развивается недержание кала и мочи .

При отсутствии анатомического перерыва спинного мозга, а также при синдроме частичного нарушения его проводимости отмечается постепенное восстановление нарушенных функций.

Клинически прогрессирующая травматическая болезнь может проявляться:

- синдромами миелопатии (сиринго-миелитический синдром, синдром бокового амиотрофического склероза, спастическая параплегия, нарушения спинального кровообращения);

- спинальным арахноидитом, характеризующимся полирадикулярным болевым синдромом, усугублением имевшихся проводниковых расстройств;

- дистрофическим процессом в виде остеохондроза, деформирующего спондилеза со стойким болевым синдромом.

Осложнения и последствия повреждений позвоночника и спинного мозга делят следующим образом :

- инфекционно-воспалительные осложнения;

- нейротрофические и сосудистые нарушения;

- нарушения функции тазовых органов;

- ортопедические последствия.

Инфекционно-воспалительные осложнения могут быть ранними (развиваются в острый и ранний периоды ПСМТ) и поздними. В остром и раннем периоде гнойно-воспалительные осложнения в первую очередь связаны с инфицированием дыхательной и мочевыводящей систем, а также с пролежневым процессом, который протекает по типу гнойной раны. При открытой ПСМТ возможно также развитие таких грозных осложнений, как гнойный эпидурит, гнойный менингомиелит, абсцесс спинного мозга, остеомиелит костей позвоночника. К поздним инфекционно-воспалительным осложнениям относят хронический эпидурит и арахноидит.

Пролежни - одно из основных осложнений, возникающих у больных с травмами позвоночника, которые сопровождаются повреждениями спинного мозга. По различным данным, они встречаются у 40-90% больных с травмами позвоночника и спинного мозга. Довольно часто течение глубоких и обширных пролежней в некротически-воспалительной стадии сопровождается выраженной интоксикацией, септическим состоянием и в 20% случаев заканчивается смертельным исходом. Во многих работах, касающихся спинальных больных, пролежни определяются как трофические нарушения. Без нарушения трофики тканей пролежни возникнуть не могут, и их развитие обусловлено травмой спинного мозга. При такой трактовке появление пролежней у спинальных больных становится неизбежным. Тем не менее у ряда спинальных больных пролежни не образуются. Некоторые авторы связывают образование пролежней с факторами сдавления, смещающей силы и трения, длительное воздействие которых на ткани между костями скелета и поверхностью постели вызывает ишемию и развитие некроза. Нарушение кровообращения (ишемия) при длительном сдавливании мягких тканей в конечном счете приводит к местным трофическим нарушениям и некрозу различной степени в зависимости от глубины поражения тканей. Ишемия мягких тканей, переходящая при длительной экспозиции в некроз, в сочетании с инфекцией и другими неблагоприятными факторами приводит к нарушению иммунитета больного, вызывает развитие тяжелого септического состояния, сопровождающегося интоксикацией, анемией, гипопротеине-мией. Длительный гнойный процесс часто ведет к амилоидозу внутренних органов, в результате которого развивается почечная и печеночная недостаточность.

Пролежни в области крестца по частоте занимают первое место (до 70% случаев) и обычно появляются в начальном периоде травматической болезни спинного мозга, что препятствует проведению ранних реабилитационных ме-роприятий и в ряде случаев не позволяет своевременно произвести реконструктивные вмешательства на позвоночнике и спинном мозге.

При оценке состояния пролежней можно использовать классификацию, предложенную А.В. Гаркави , в которой выделены шесть стадий: 1) первичная реакция; 2) некротическая; 3) некротически-воспалительная; 4) воспалительно-регенераторная; 5) регенераторно-рубцовая; 6) трофических язв. Клинически пролежни в стадии первичной реакции (обратимая стадия) характеризовались ограниченной эритемой кожи, образованием пузырей в области крестца.

Нейротрофические и сосудистые нарушения возникают в связи с денервацией тканей и органов. В мягких тканях у больных ПСМТ очень быстро развиваются пролежни и плохо заживающие трофические язвы. Пролежни и язвы становятся входными воротами инфекции и источниками септических осложнений, приводя в 20-25% случаев к смерти . Для анатомического перерыва спинного мозга характерно возникновение так называемых твердых отеков нижних конечностей. Характерны нарушения метаболизма (гипопротеине-мия, гиперкальциемия, гипергликемия), остеопороз, анемия. Нарушение вегетативной иннервации внутренних органов приводит к развитию гнойно-некротических язвенных колитов, энтероколитов, гастритов, к острым желудочно-кишечным кровотечениям, к дисфункции печени, почек, поджелудочной железы. Наблюдается тенденция к камнеобразованию в желчных и в мочевы-водящих путях. Нарушение симпатической иннервации миокарда (при травмах шейного и грудного отделов спинного мозга) проявляется брадикардией, аритмией, ортостатической гипотензией. Может развиться либо усугубиться ишемическая болезнь сердца, при этом больные могут не чувствовать боли в результате нарушения ноцептивной афферентной импульсации от сердца . Со стороны легочной системы более чем у 60% больных в раннем периоде развивается пневмония, которая служит одной из наиболее частых причин гибели пострадавших .

Одним из осложнений является также вегетативная дизрефлексия. Вегетативная дизрефлексия представляет собой мощную симпатическую реакцию, возникающую в ответ на болевые или иные стимулы у больных с уровнем поражения спинного мозга выше Th6. У больных с тетраплегией этот синдром наблюдается, по данным разных авторов, в 48-83% случаев, обычно спустя два и более месяцев после травмы . Причиной служит болевая, либо проприоцептивная импульса-ция, обусловленная растяжением мочевого пузыря, катетеризацией, гинекологическим или ректальным обследованием, а также другими интенсивными воздействиями. В норме проприоцептивные и болевые импульсы следуют к коре головного мозга по задним столбам спинного мозга и спиноталамическому пути. Полагают, что при перерыве этих путей импульсация циркулирует на спинальном уровне, вызывая возбуждение симпатических нейронов и мощный «взрыв» симпатической активности; при этом нисходящие супраспинальные ингибирующие сигналы, в норме модулирующие вегетативную реакцию, в силу поврежденияспинного мозга не оказывают должного тормозного воздействия . В результате развивается спазм периферических сосудов и сосудов внутренних органов, что приводит к резкому подъему артериального давления. Нескорригированная ги-пертензия может привести к потере сознания, к развитию внутримозгового кровоизлияния, острой сердечной недостаточности.

Другим грозным осложнением, приводящим нередко к летальному исходу, является тромбоз глубоких вен , возникающий по различным данным у 47-100% больных ПСМТ . Наиболее высок риск тромбоза глубоких вен в первые две недели после травмы. Следствием тромбоза глубоких вен может стать эмболия легочной артерии, которая возникает в среднем у 5% больных и является ведущей причиной смерти при ПСМТ . При этом в результате повреждения спинного мозга могут отсутствовать типичные клинические симптомы эмболии (боль в груди, диспноэ, кровохарканье); первыми признаками могут быть нарушения сердечного ритма .

Нарушения функции тазовых органов проявляются расстройствами мочеиспускания и дефекации . В стадии спинального шока наблюдается острая задержка мочи, связанная с глубокой депрессией рефлекторной активности спинного мозга. По мере выхода из шока форма нейрогенной дисфункции мочевого пузыря зависит от уровня поражения спинного мозга. При поражении надсегментарных отделов (мочевой пузырь получает парасимпатическую и соматическую иннервацию из сегментов S2-S4) развивается нарушение мочеиспускания по проводниковому типу. Вначале наблюдается задержка мочеиспускания, связанная с повышением тонуса наружного сфинктера мочевого пузыря. Может наблюдаться парадоксальная ишурия: при переполненном мочевом пузыре моча выделяется по каплям в результате пассивного растяжения шейки мочевого пузыря и пузырных сфинктеров. По мере развития автоматизма отделов спинного мозга, находящихся дистальнее уровня поражения (через две-три недели после травмы, а иногда и в более отдаленные сроки), формируется «рефлекторный» (иногда его называют «гиперрефлекторный») мочевой пузырь: начинает работать спинальный центр мочеиспускания, локализующийся в конусе спинного мозга, и мочеиспускание происходит рефлекторно, по типу автоматизма, в ответ на наполнение мочевого пузыря и раздражение рецепторов его стенок, при этом нет произвольной (корковой) регуляции мочеиспускания. Наблюдается недержание мочи. Моча выделяется внезапно, небольшими порциями. Может наблюдаться парадоксальное прерывание мочеиспускания в связи с непроизвольным преходящим торможением мочевого потока в течение рефлекторного опорожнения. При этом императивный позыв на опорожнение мочевого пузыря указывает на неполное нарушение проводимости спинного мозга (сохранность афферентных проводящих путей от пузыря к коре больших полушарий), тогда как спонтанное внезапное опорожнение мочевого пузыря без позыва - на полное нарушение проводимости спинного мозга . На неполное поражение проводящих путей указывает также ощущение самого процесса мочеиспуска-ния и ощущение облегчения после мочеиспускания (сохранность путей температурной, болевой и проприоцептивной чувствительности от уретры к коре головного мозга). При надсегментарном поражении положителен тест «холодной воды»: через несколько секунд после введения через уретру в мочевой пузырь 60 мл холодной воды вода, а иногда и катетер с силой выталкиваются наружу. Повышен также тонус наружного ректального сфинктера. С течением времени в стенках мочевого пузыря могут наступить дистрофические и рубцовые изменения, приводящие к гибели детрузора и формированию вторично-сморщенного мочевого пузыря («органический арефлекторный мочевой пузырь»). При этом наблюдается отсутствие пузырного рефлекса, развивается истинное недержание мочи.

При травме спинного мозга с непосредственным поражением спинальных центров мочеиспускания (крестцовых сегментов S2-S4) происходит угасание рефлекса опорожнения мочевого пузыря в ответ на его наполнение. Развивается гипорефлекторная форма мочевого пузыря («функциональный арефлекторный мочевой пузырь»), характеризующаяся низким внутрипузырным давлением, снижением силы детрузора и резко заторможенным рефлексом мочеиспускания. Сохранность эластичности шейки мочевого пузыря приводит к перерастяжению мочевого пузыря и большому количеству остаточной мочи. Характерно напряженное мочеиспускание (для опорожнения мочевого пузыря больной натуживается или производит ручное выдавливание). Если больной перестает напрягаться, опорожнение прекращается (пассивное прерывистое мочеиспускание). Тест «холодной воды» отрицателен (рефлекторный ответ в виде выталкивания введенной в мочевой пузырь воды не наблюдается в течение 60 секунд). Анальный сфинктер расслаблен. Иногда пузырь опорожняется автоматически, но не за счет спинальной рефлекторной дуги, а в связи с сохранением функции интрамуральных ганглиев. Необходимо отметить, что ощущение растяжения мочевого пузыря (появление эквивалентов) сохраняется иногда при неполном повреждении спинного мозга, часто в нижнее-грудном и поясничном отделе благодаря сохранной симпатической иннервации (симпатическая иннервация мочевого пузыря связана с сегментами ТЫ 1, ТЫ2, LI, L2). По мере развития в мочевом пузыре дистрофических процессов и потери шейкой пузыря эластичности формируются органический арефлекторный мочевой пузырь и истинное недержание с постоянным выделением мочи по мере ее поступления в пузырь.

При выделении клинических синдромов основное значение придается тонусу детрузора и сфинктера и их взаимоотношению. Тонус детрузора или силу его сокращения измеряют по приросту внутрипузырного давления в ответ на введение всегда постоянного количества жидкости - 50 мл. Если этот прирост составляет 103+13 мм водн. ст., тонус детрузора мочевого пузыря считается нормальным, при меньшем приросте - сниженным, при большем - повышенным. Нормальными показателями сфинктерометрии считаются 70- 11 мм рт. ст.

В зависимости от соотношения состояния детрузора и сфинктера выделяют несколько синдромов.

Атонический синдром отмечается чаще при поражении конуса спинного мозга, то есть спинальных центров регуляции мочеиспускания. При цистомет-рическом исследовании введение в мочевой пузырь 100-450 мл жидкости не изменяет нулевого пузырного давления. Введение больших объемов (до 750 мл) сопровождается медленным повышением внутрипузырного давления, но оно не превышает 80-90 мм водн. ст. Сфинктерометрия при атоническом синдроме выявляет низкие показатели тонуса сфинктера - 25-30 мм рт. ст. Клинически это сочетается с атонией и арефлексией скелетной мускулатуры.

Синдром гипотонии детрузора - также результат сегментарных дисфункций мочевого пузыря, при этом вследствие снижения тонуса детрузора емкость пузыря увеличивается до 500-700 мл. Тонус сфинктера может быть пониженным, нормальным и даже повышенным.

Синдром преобладающей гипотонии сфинктера наблюдается при травмах на уровне S2-S4 сегментов; для него характерно частое непроизвольное отделение мочи без позыва. При сфинктерометрии выявляется отчетливое снижение тонуса сфинктера и на цистограмме - незначительно сниженный или нормальный тонус детрузора. При пальпаторном исследовании сфинктера прямой кишки и мышц промежности определяется низкий тонус.

Синдром гипертонии детрузора и сфинктера отмечается у больных с проводниковым типом дисфункции мочевого пузыря. Цистометрически при введении в мочевой пузырь 50-80 мл жидкости наблюдается резкий скачок внутрипузырного давления до 500 мм водн. ст. При сфинктерометрии тонус его высокий - от 100 до 150 мм рт. ст. Наблюдаются резкие сокращения мышц промежности в ответ на их пальпацию.

Синдром преобладающей гипертонии детрузора при цистометрии характеризуется повышением тонуса детрузора при маленькой емкости пузыря (50-150 мл), отмечается высокий скачок внутрипузырного давления в ответ на введение 50 мл жидкости, а тонус сфинктера может быть нормальным, повышенным или пониженным.

Для выяснения электровозбудимости мочевого пузыря применяют также трансректальную электростимуляцию. При грубых дистрофических процессах в мочевом пузыре детрузор теряет свою возбудимость, что проявляется отсутствием подъема внутрипузырного давления в ответ на электрическую стимуляцию. Степень дистрофических процессов определяют по количеству коллаге-новых волокон методом пузырной биопсии (при инфицировании мочевых путей либо значительных трофических нарушениях в стенке пузыря биопсия не показана).

Зачастую спинальное повреждение сочетается с нарушением мочевыделения и развитием инфекций мочевыводящих путей (МВП). В настоящее время инфекции МВП (ИМП) представляют собой основную причину заболеваемости и смертности пациентов с повреждением спинного мозга. Около 40% инфекций у данной категории пациентов имеют нозокомиальное происхождение и большинство из них связано с катетеризацией мочевого пузыря. ИМП в 2-4%случаев являются причиной бактериемии, при этом вероятность летального исхода у пациентов с уросепсисом с использованием современной тактики ведения данной категории больных составляет от 10 до 15%, причем этот показатель в три раза выше, чем у пациентов без бактериемии.

Инфицирование МВП зависит не только от факторов риска, обусловленных как денервацией мочевого пузыря, так и выбранным методом катетеризации. Общая частота развития ИМП у спинальных пациентов составляет 0,68 на 100 человек. Наиболее опасными с точки зрения инфицирования признаны методы постоянного дренирования и использование открытых систем. Вероятность развития инфекции при этом составляет 2,72 случая на 100 пациентов, в то время как при использовании периодической катетеризации и закрытых систем катетеризации этот показатель составляет 0,41 и 0,36 случаев на 100 человек в день соответственно. Для спинальных пациентов характерно атипичное и мало-симптомное течение ИМП.

Нарушение акта дефекации при ПСМТ также зависит от уровня поражения спинного мозга . При над сегментарном поражении больной перестает ощущать позывы на дефекацию и наполнение прямой кишки, наружный и внутренний сфинктеры прямой кишки находятся в состоянии спазма, возникает стойкая задержка стула. При поражении спинальных центров развивается вялый паралич сфинктеров и нарушение рефлекторной перистальтики кишечника, что проявляется истинным недержанием кала с его отхождением небольшими порциями при поступлении в прямую кишку. В более отдаленный период может наступать автоматическое опорожнение прямой кишки за счет функционирования интрамурального сплетения. При ПСМТ возможно также возникновение гипотонического запора, связанного с гипомобильностыо больного, слабостью мышц брюшного пресса, парезом кишечника. Нередко наблюдаются геморроидальные кровотечения .

Ортопедические последствия ПСМТ условно могут быть разделены по их локализации на вертебральные, то есть связанные с изменением формы и структуры самого позвоночника, и экстравертебральные, то есть обусловленные изменением формы и структуры иных элементов опорно-двигательной системы (патологические установки сегментов конечностей, контрактуры суставов и др.). По характеру функциональных нарушений, возникающих при ПСМТ, ортопедические последствия можно разделить также на статические, то есть сопровождающиеся нарушением статики тела, и динамические, то есть сопряженные с нарушением динамических функций (локомоции, мануальные манипуляции и др.). Ортопедические последствия могут быть следующими : нестабильность травмированного отдела позвоночника; сколиозы и кифозы позвоночника (особенно часто прогрессируют кифотические деформации с углом кифоза, превышающим 18-20°); вторичные вывихи, подвывихи и патологические переломы; дегенеративные изменения в межпозвонковых дисках, суставах и связках позвоночника; деформация и сужение позвоночного канала с компрессией спинного мозга. Данные последствия сопровождаются об-ычно стойким болевым синдромом, ограничением подвижности травмированного отдела позвоночника и его функциональной несостоятельностью, а в случаях сдавления спинного мозга - прогрессирующим нарушением функций спинного мозга. Возникшие ортопедические нарушения при отсутствии своевременного лечения часто прогрессируют и приводят больного к инвалидности.

Большую группу ортопедических последствий составляют вторичные деформации конечностей, суставов, ложные суставы и контрактуры, которые формируются при отсутствии ортопедической профилактики уже через несколько недель после первичной травмы.

К достаточно частому осложнению ПСМТ относится гетеротопическая оссификация , развивающаяся обычно в первые шесть месяцев после травмы, по различным данным, у 16-53% больных . Эктопические оссификаты появляются лишь в областях, расположенных ниже неврологического уровня поражения. Обычно поражаются области крупных суставов конечностей (тазобедренные, коленные, локтевые, плечевые).

Рассматривая концепцию Г. Селье (1974) о «стрессе» и «дистрессе» в клинических, психологических и социальных аспектах, можно предположить в клинике осложненных повреждений позвоночника и спинного мозга наличие, кроме биологических, также общих неспецифических и частных специфических личностных, психологических и социальных приспособительных реакций, изученных в настоящее время лишь в общих чертах, что существенно влияет на степень реабилитации больных.

Анализ выявленных нервно-психических нарушений показал, что среди факторов, определяющих состояние нервно-психической сферы, ведущую роль играет травматический, связанный с повреждением шейного отдела спинного мозга, в значительной мере участвующего в регуляции психических функций высшего уровня.

Следует отметить, что травмы шейного отдела спинного мозга не исключают наличия сочетанной черепно-мозговой травмы и развития шокового состояния, что также способствует нарушению психики в отдаленном периоде. Это проявляется в виде нарушения пространственной ориентации, схемы тела, зрительных, слуховых и речевых расстройств, снижения внимания и памяти, общей истощаемости психических процессов.

Другим фактором, определяющим степень психических расстройств, является тяжесть последствий травмы шейного отдела спинного мозга в виде выраженных двигательных и чувствительных расстройств, нарушений функции тазовых органов, нарушений со стороны дыхательной и сердечно-сосудистой системы и обмена веществ.

Третьим значимым фактором формирования психических расстройств у больных в позднем периоде травматической болезни спинного мозга является социальный. Ограничения передвижения, зависимость больного с травмой шейного отдела позвоночника от постороннего ухода в повседневной жизни, социальная дезадаптация - всеэто определяет подавленное состояние психики, усугубляет функциональные и соматические расстройства. Необходимо подчеркнуть, что социальный фактор, являясь комплексным, включает в себя как чисто социальные, так и личностные компоненты. К социальным компонентам относятся такие, как установление инвалидности, невозможность выполнения работы, снижение уровня материального обеспечения, изоляция, сужение круга общения и ограничение видов занятий. К личностным - взаимоотношения в семье, трудности сексуальной жизни, проблемы рождения и воспитания детей, зависимость от постороннего ухода и т.п.

В результате изучения всех данных о состоянии больного с ТБСМ необходимо сформулировать полный функциональный диагноз, который должен включать следующие разделы:

1. Диагноз по МКБ 10 (Т 91.3) - последствия травмы спинного мозга или посттравматическая миелопатия.

2. Характер травмы (травматический вывих, переломовывих, перелом, ранение и т.д.), уровень повреждения, дата травмы. Например: осложненный компрессионный переломовывих С6-T2. Тип повреждения спинного мозга по шкале ASIA.

3. Уровень полного и неполного повреждения спинного мозга (чувствительный, двигательный с обеих сторон тела больного).

4. Имеющиеся синдромы поражения спинного мозга.

5. Имеющиеся осложнения.

6. Сопутствующие заболевания.

7. Степень ограничения функциональной активности и жизнедеятельности.

Иванова Г.Е., Цыкунов М.Б., Дутикова Е.М. Клиническая картина травматической болезни спинного мозга // Реабилитация больных с травматической болезнью спинного мозга; Под общ. ред. Г.Е. Ивановой, В.В. Крылова, М.Б. Цыкунова, Б.А. Поляева. - М.: ОАО «Московские учебники и Картолитография», 2010. - 640 с. С. 74-86.

Нарушение нервной трофики. Нейродистрофический процесс

Трофика клетки и дистрофический процесс. Трофика клетки - комплекс процессов, обеспечивающих ее жизнедеятельность и поддержание генетически заложенных свойств. Расстройство трофики представляет собой дистрофию, развивающиеся дистрофические изменения составляют дистрофический процесс.

Нейродистрофический процесс. Это развивающееся нарушение трофики, которое обусловлено выпадением или изменением нервных влияний. Оно может возникать как в периферических тканях, так и в самой нервной системе. Выпадение нервных влияний заключается: 1) в прекращении стимуляции иннервируемой структуры в связи с нарушением выделения или действия нейромедиатора; 2) в нарушении секреции или действия комедиаторов - веществ, которые выделяются вместе с нейромедиаторами и играют роль нейромодуляторов, обеспечивающих регуляцию рецепторных, мембранных и метаболических процессов; 3) в нарушении выделения и действия трофогенов. Трофогены (трофины) - вещества различной, преимущественно белковой природы, осуществляющие собственно трофические эффекты поддержания жизнедеятельности и генетически заложенных свойств клетки. Источником трофогенов являются: 1) нейроны, из которых трофогены поступают с антероградным (ортоградным) аксоплазматическим током в клетки-реципиенты (другие нейроны или иннервируемые ткани на периферии); 2) клетки периферических тканей, из которых трофогены поступают по нервам с ретроградным аксоплазматическим током в нейроны (рис. 21-3); 3) глиальные и шванновские клетки, которые обмениваются с нейронами и их отростками трофическими веществами. Вещества, играющие роль трофогенов, образуются также из сывороточных и иммунных белков. Трофическое воздействие могут оказывать некоторые гормоны. В регуляции трофических процессов принимают участие пептиды, ганглиозиды, некоторые нейромедиаторы.

К нормотрофогенам относятся различного рода белки, способствующие росту, дифференцировке и выживанию нейронов и соматических клеток, сохранению их структурного гомеостаза (например, фактор роста нервов).

В условиях патологии в нервной системе вырабатываются трофические вещества, вызывающие устойчивые патологические

Рис. 21-3. Трофические связи мотонейрона и мышцы. Вещества из тела мотонейрона (МН), его мембраны 1, перикариона 2, ядра 3 транспортируются с антероградным аксоплазматическим током 4 в терминаль 5. Отсюда они, а также вещества, синтезируемые в самой терминали 6, поступают транссинаптически через синаптическую щель (СЩ) в концевую пластинку (КП) и в мышечное волокно (МВ). Часть неиспользованного материала поступает обратно из терминали в тело нейрона с ретроградным аксоплазматическим током

7. Вещества, образующиеся в мышечном волокне и концевой пластинке, поступают транссинаптически в обратном направлении в терминаль и далее с ретроградным аксоплазматическим током 7 в тело нейрона - к ядру

8, в перикарион 9, к мембране дендритов 10. Некоторые из этих веществ могут поступать из дендритов (Д) транссинаптически в другой нейрон через его пресинаптическое окончание (ПО) и из этого нейрона далее в другие нейроны. Между нейроном и мышцей происходит постоянный обмен веществами, поддерживающими трофику, структурную целостность и нормальную деятельность обоих образований. В этом обмене принимают участие глиальные клетки (Г). Все указанные образования создают регионарную трофическую систему (или трофический контур)

изменения клеток-реципиентов (патотрофогены, по Г.Н. Крыжановскому). Такие вещества синтезируются, например в эпилептических нейронах - поступая с аксоплазматическим током в другие нейроны, они могут индуцировать у этих нейронов-реципиентов эпилептические свойства. Патотрофогены могут распространяться по нервной системе, как по трофической сети, что является одним из механизмов распространения патологического процесса. Патотрофогены образуются и в других тканях.

Дистрофический процесс в денервированной мышце. Синтезируемые в теле нейрона и транспортируемые в терминаль с аксоплазматическим током вещества, выделяются нервным окончанием и поступают в мышечные волокна (см. рис. 21-3), выполняя функцию трофогенов. Эффекты нейротрофогенов видны из опытов с перерезкой двигательного нерва: чем выше произведена перерезка, т.е. чем больше сохранилось трофогенов в периферическом отрезке нерва, тем позднее наступает денервационный синдром. Нейрон вместе с иннервируемой им структурой (например, мышечным волокном) образует регионарный трофический контур, или регионарную трофическую систему (см. рис. 21-3). Если осуществить перекрестную реиннервацию мышц с разными исходными структурно-функциональными характеристиками (реиннервация «медленных» мышц волокнами от нейронов, иннервировавших «быстрые» мышцы, и наоборот), то реиннервированная мышца приобретает в значительной мере новые динамические характеристики: «медленная» становится «быстрой», «быстрая» - «медленной».

В денервированном мышечном волокне возникают новые трофогены, которые активируют разрастание нервных волокон (sprouting). Указанные явления исчезают после реиннервации.

Нейродистрофический процесс в других тканях. Взаимные трофические влияния существуют между каждой тканью и ее нервным аппаратом. При перерезке афферентных нервов возникают дистрофические изменения кожи. Перерезка седалищного нерва, который является смешанным (чувствительным и двигательным), вызывает образование дистрофической язвы в области скакательного сустава (рис. 21-4). С течением времени язва может увеличиться в размерах и охватить всю стопу.

Классический опыт Ф. Мажанди (1824), послуживший началом разработки всей проблемы нервной трофики, заключается в перерезке у кролика первой ветви тройничного нерва. В результа-

те такой операции развивается язвенный кератит, вокруг язвы возникает воспаление, и со стороны лимба в роговицу врастают сосуды, которые в ней в норме отсутствуют. Врастание сосудов является выражением патологического растормаживания сосудистых элементов - в дистрофически измененной роговице исчезает фактор, который тормозит в норме рост в нее сосудов, и появляется фактор, который активирует этот рост.

Дополнительные факторы нейродистрофического процесса. К факторам, участвующим в развитии нейродистрофического процесса, относятся: сосудистые изменения в тканях, нарушения гемо- и лимфомикроциркуляции, патологическая проницаемость сосудистой стенки, нарушение транспорта в клетку питательных и пластических веществ. Важным патогенетическим звеном является возникновение в дистрофической ткани новых антигенов в результате изменений генетического аппарата и синтеза белка, образуются антитела к тканевым антигенам, возникают аутоиммунный и воспалительный процессы. В указанный комплекс патологических процессов входят также вторичное инфицирование язвы, развитие инфекционных повреждений и воспаления. В целом нейродистрофические поражения тканей имеют сложный многофакторный патогенез (Н.Н. Зайко).

Генерализованный нейродистрофический процесс. При повреждениях нервной системы могут возникать генерализованные формы нейродистрофического процесса. Одна из них проявляется в виде поражения десен (язвы, афтозный стоматит), выпадения зубов, кровоизлияния в легких, эрозии слизистой и кровоизлияния в желудке (чаще в области привратника), в кишечнике, особенно в

области буагиниевой заслонки, в прямой кишке. Поскольку такие изменения возникают сравнительно регулярно и могут иметь место при разных хронических нервных повреждениях, они получили название стандартной формы нервной дистрофии (А.Д. Сперанский). Часто указанные изменения возникают при повреждении высших вегетативных центров, в частности, гипоталамуса (при травмах, опухолях), в эксперименте при наложении стеклянного шарика на турецкое седло.

Все нервы (двигательные, чувствительные, вегетативные), какую бы функцию они ни выполняли, являются одновременно трофическими (А.Д. Сперанский). Нарушения нервной трофики составляют важное патогенетическое звено болезней нервной системы и нервной регуляции соматических органов, поэтому коррекция трофических изменений является необходимой частью комплексной патогенетической терапии.

ПАТОЛОГИЯ НЕЙРОНА

Представляемые в данном ЖЖ обзорные статьи по кортизолу и депрессии были выполнены мной в процессе работы в МНПЦ Психоневрологии (бывш. Клиника Неврозов им. Соловьева), но в связи с экстренным увольнением из этой организации я не успела их опубликовать в официальной медицинской прессе. Данные тексты от первого до последнего слова написаны мной. Их появление где-либо в печати без упоминания моего авторства - это воровство.

Депрессия - одна из ведущих проблем современной медицины
Депрессия признана Всемирной Организацией Здравоохранения одной из 10 важнейших проблем, имеющих международное значение . Помимо негативного влияния на качество жизни, депрессия сопряжена с риском развития целого ряда заболеваний и повышенной смертностью. Так, в многочисленных исследованиях продемонстрирована связь между депрессией и высоким риском ишемической болезни сердца и инфаркта миокарда . В исследованиях исходов хирургических вмешательств депрессия является независимым неблагоприятным прогностическим фактором в течение послеоперационного периода у хирургических больных, и сопряжена с высоким риском осложнений у таких пациентов . Важно, что адекватное лечение депрессии приводит к снижению смертности и заболеваемости у пациентов с депрессией .

Риск неврологических заболеваний также выше у пациентов с депрессией в 2 – 3 раза по сравнению с общей популяцией. В целом ряде исследований было показано, что у пациентов с депрессией чаще развивается эпилепсия , болезнь Паркинсона , инсульты , черепно-мозговые травмы , болезнь Альцгеймера . Повышенный риск неврологических заболеваний у пациентов с депрессией согласуется с данными современных нейровизуализационных исследований, указывающих на характерность дефицита объёма серого и белого вещества головного мозга для таких больных . При этом, по данным исследования J.L. Phillips с соавтор. (2012), на фоне лечения антидепрессантами объём мозга у пациентов с депрессией увеличивается, и данная тенденция коррелирует с улучшением психического статуса.

Симптомы депрессии
Депрессия характеризуется устойчивым подавленным настроением, снижением интереса к миру, неспособностью получать удовольствие, пониженной активностью. Характерными проявлениями депрессии являются ощущения тоски или пустоты, самоуничижение, безразличие, плаксивость. В целом ряде экспериментальных исследований была показана склонность пациентов с депрессией негативно воспринимать нейтральные или даже позитивные стимулы и/или ситуации . В частности, пациенты с депрессией достоверно чаще воспринимают нейтральное выражение лица на портретах как выражение печали или гнева .

В то же время, вегетативные, соматические и психомоторные проявления депрессии могут существенно варьировать. В современной классификации депрессивных расстройств принято выделять два подтипа депрессии. Меланхолическая депрессия характеризуется классическим симптомокомплексом вегетативно-соматических расстройств, включая бессонницу и пониженный аппетит со снижением веса. Атипичная депрессия проявляется противоположными расстройствами: гиперсомнией и повышенным аппетитом с увеличением веса. Несмотря на свое название, атипичная депрессия встречается с той же частотой (15-30%), что и «чистая» меланхолическая депрессия (25-30%), при этом для большинства пациентов характерен смешанный паттерн депрессивных расстройств . Более того, паттерн депрессивных расстройств может меняться у одного и того же пациента на протяжении жизни. В целом, «атипичный» паттерн депрессивных расстройств характерен для более тяжело протекающих депрессивных расстройств и чаще встречается у женщин .

Хотя для обоих типов депрессии характерна психомоторная заторможенность, в ряде случаев депрессия может сопровождаться психомоторным возбуждением (ажитированная депрессия). Следует также отметить, что депрессивные расстройства у лиц, злоупотребляющих психоактивными веществами, также имеют особенности, в частности для таких пациентов не характерны чрезмерное чувство вины и самоуничижение. Важно, что в большинстве современных исследований подтипы депрессии не выделяются и, соответственно, несовпадение результатов сходных по дизайну исследований может определяться различиями в пропорциях депрессии разного типа.

Депрессия сопряжена с перенапряжением систем стрессорного ответа
В настоящее время общепризнанно, что негативные последствия депрессии связаны с перенапряжением физиологических систем стрессорного ответа. В стрессовой ситуации происходит мобилизация всех необходимых ресурсов организма, и основными триггерами такой мобилизации являются активация симпато-адреналовой вегетативной системы (быстрый компонент стрессорного ответа) и активация гипоталамо-гипофизарно-надпочечниковой оси (медленный компонент стрессорного ответа) . Классическими компонентами стрессорного ответа являются повышение артериального давления, учащение сердечного ритма, повышение концентрации глюкозы и повышение скорости коагуляционных процессов в крови . Стрессорный ответ включает также существенные изменения в клеточном и белково-липидном составе периферической крови . Таким образом, мобилизация ресурсов в ответ на острый стресс приводит к переходу организма на особый режим функционирования, обозначаемый в соответствующей литературе как состояние «аллостаза» [Судаков, Умрюхин, 2009; Dowd et al., 2009; Morris et al., 2012], противопоставляемый режиму «гомеостаза», при котором преобладают восстановительные метаболические процессы.

Затяжной стресс приводит к адаптивным, а затем и патологическим изменениям в организме, обозначаемым термином «аллостатическая нагрузка» [Судаков, Умрюхин, 2009; Dowd et al., 2009; Morris et al., 2012]. Чем длительнее хронический стресс и, соответственно, больше напряжены системы стрессорного ответа, тем более выражены такие биологические маркеры аллостатической нагрузки как повышение систолического и диастолического артериального давления, абдоминальное ожирение, повышение концентрации общего холестерина и снижение концентрации холестерина высокой плотности, снижение толерантности к глюкозе и повышение уровня гликозилированного гемоглобина, повышение суточного кортизола, адреналина и норадреналина в моче . Длительное пребывание огранизма в состоянии «аллостаза» сопровождается повреждением тканей и органов в том числе и в связи с недостаточностью метаболических процессов, направленных на поддержание гомеостаза.

Отрицательные эмоции являются неотъемлемой составляющей ответа нервной системы на стрессирующие стимулы и события [Судаков, Умрюхин, 2009]. Даже на фоне умеренных повседневных стрессорных нагрузок происходят закономерные изменения в эмоциональной сфере. Так в исследовании N. Jacobs с соавтор. (2007) было показано, что на фоне повышения уровня бытового стресса (выполнение неинтересной и требующей усилий работы и т.д.) снижается уровень положительных эмоций и возрастает уровень отрицательных эмоций и возбуждения. В исследовании T. Isowa с соавтор. (2004) стрессорные нагрузки также приводили к достоверному повышению уровня ситуационной тревоги и физическому и умственному утомлению у здоровых испытуемых.

В последние годы значительная часть исследований неблагоприятных последствий острого и хронического стресса, а также депрессии была сфокусирована на роли гипоталамо-гипофизарно-надпочечниковой системы как одного из ведущих медиаторов стрессорного ответа . Из всех гормонов данной системы в наибольшей степени изучены эффекты кортизола как в связи с широтой его регуляторных влияний на структуры и функции организма, так и из-за доступности его измерений. В настоящем аналитическом обзоре литературных данных мы суммировали наиболее важные результаты исследований влияния кортизола на функции и нейротрофические процессы в центральной нервной системы как в физиологических условиях, так и в условиях хронического стресса и у пациентов с депрессией и/или тревожными расстройствами.


Особенности регуляции секреции кортизола при депрессии
Аномалии функционирования гипоталамо-гипофизарно-надпочечниковой системы у больных депрессией изучались в многочисленных исследованиях . В целом, у больных c депрессией значительно чаще регистрируются отклонения в суточном ритме секреции кортизола, гиперактивность и/или сниженная реактивность гипоталамо-гипофизарно-надпочечниковой системы по сравнению с нормальным контролем. Тем не менее, первоначальные надежды на высокую специфичность и чувствительность тестов, оценивающих функции гипоталамо-гипофизарно-надпочечниковой системы, как метода диагностики депрессии не оправдались. На данном этапе также не было получено однозначных подтверждений различий функционирования гипоталамо-гипофизарно-надпочечниковой системы при меланхолическом и атипичном типах депрессии .

Гиперкортизолемия в утренние часы характерна как для пациентов с депрессией, так и для здоровых испытуемых, предрасположенных к развитию депрессии . Примерно у 50% пациентов с депрессией гиперкортизолемия выявляется также в вечернее время . Исследование содержания кортизола в волосах также указывает на характерность хронической гиперкортизолемии для пациентов с депрессией .

По данным различных исследований, отсутствие ингибирующего влияния дексаметазона на концентрацию кортизола выявляется в среднем у 30-60% пациентов с депрессивным расстройством . Частота положительной дексаметазоновой пробы варьирует в зависимости от тяжести депрессивных расстройств. Так, в исследовании, включавшем амбулаторных пациентов с депрессией, частота положительного результата дексаметазонового теста составляла всего лишь 12%, в то время как в популяциях пациентов с психотическими формами депрессии отсутствие ингибирующего влияния дексаметазона регистрировалось в 64 – 78% случаев . Данный тест не является высоко специфичным для депрессии, как предполагалось ранее, и может демонстрировать сходные результаты на фоне голодания или других стрессогенных событий . Отсутствие ингибирующего влияния дексаметазона на секрецию кортизола трактуется исследователями как проявление резистентности глюкокортикоидных рецепторов .

Назначение кортиколиберина чаще индуцирует гиперпродукцию АКТГ с последующей гиперкортизолемией у пациентов с депрессией по сравнению со здоровым контролем, что также указывает на чрезмерную активацию гипоталамо-гипофизарно-надпочечниковой системы у таких больных . По данным некоторых исследований, эта тенденция в большей степени характерна для атипичной депрессии по сравнению с меланхолической . В последние годы стала активно использоваться модифицированная дексаметазоново-кортиколибериновая проба, когда после введения дексаметазона в 23 часов накануне, после определения уровня кортизола на следующие сутки назначается кортиколиберин с измерением уровня кортизола в течение нескольких последующих часов .

В настоящее время исследуется гипотеза о постепенной модификации функционирования гипоталамо-гипофизарно-надпочечниковой системы по мере увеличения продолжительности депрессивного расстройства . Экспериментальные исследования на животных указывают на преимущественное значение кортиколиберина как индуктора секреции АКТГ – кортизола в острой фазе заболевания с последующим переходом к преимущественно вазопрессиновую регуляцию активности гипоталамо-гипофизарно-надпочечниковой системы в хронической стадии заболевания. Таким образом, у пациентов с продолжительной депрессией и вазопрессин-индуцируемой гиперкортизолемией сохраняется возможность острого стрессорного ответа с дальнейшим увеличением секреции кортизола на фоне острой активации кортиколибериновой регуляции секреции АКТГ.

Наличие двух независимых друг от друга систем регуляции секреции АКТГ – кортизола, по мнению исследователей, объясняет несоответствие результатов исследований в этой области, в настоящее время оценивающих преимущественно активность кортиколиберинового звена . Авторы рекомендуют оценивать длительность и тяжесть депрессивного расстройства, тип депрессии (меланхолический, атипичный), а также индивидуальные характеристики пациентов как ковариаты функционирования гипоталамо-гипофизарно-надпочечниковой системы у пациентов с депрессией.

Учитывая данные о неблагоприятном эффекте гиперкортизолемии на выраженность депрессивных переживаний, предпринимались попытки оценить эффективность блокады глюкокортикоидных рецепторов как метода лечения депрессии . Предварительные данные подобных исследований свидетельствуют о необходимости учета состояния гипоталамо-гипофизарно-надпочечниковой системы до начала лечения, поскольку индивидуальные эффекты блокады глюкокортикоидных рецепторов существенно варьируют от значительного улучшения до значительного ухудшения эмоциональных расстройств.

В целом ряде исследований была выявлена дисфункция гипоталамо-гипофизарно-надпочечниковой оси также у пациентов с тревожными расстройствами . Однако, результаты исследований в этой области противоречивы: часть исследований показала чрезмерную гиперактивность гипоталамо-гипофизарно-надпочечниковой оси при тревожных расстройствах, в то время как в других исследованиях были выявлены достоверно более низкие показатели концентрации кортизола или меньшие изменения концентрации кортизола в ответ на стрессорную нагрузку у пациентов с тревожными расстройствами по сравнению с контролем.
В частности, для популяций пациентов с посттравматическим стрессовым расстройством характерны более низкие показатели концентрации кортизола в крови по сравнению с контролем . По данным ряда исследований, ситуация меняется на протяжении заболевания, для острого периода после стрессового события характерна гиперкортизолемия, в хронической фазе постстрессового расстройства выявляется гипофункция гипоталамо-гипофизарно-надпочечниковой оси. Исследования концентрации кортизола в волосах у пациентов с тревожными расстройствами также указывают на характерность хронически пониженного уровня кортизола для таких пациентов .

Кортизол, нейротрофические факторы и нейрогенез
Синтез нейротрофических факторов в структурах гиппокампа, в первую очередь BDNF (brain-derived neurotrophic factor), снижается на фоне хронического стресса . Данные экспериментальных исследований последовательно указывают на сильное негативное влияние глюкокортикоидов на синтез BDNF в гиппокампе с одной стороны, и усиление синтеза BDNF на фоне хронического назначения антидепрессантов .

В экспериментальных исследованиях было показано, что хронический стресс приводит к выраженным изменениям межнейрональных синаптических связей в гиппокампе, амигдалах, медиальной префронтальной коре со снижением длины и количества отростков дендритов на 16 - 20% . Кроме того, хронический стресс в экспериментальных условиях приводил к снижению нейрогенеза (в норме в гиппокампе взрослой крысы ежедневно рождаются и выживают в течение месяца 9 тыс. нейронов) . Активность микроглиальных клеток также меняется на фоне хронического стресса . Большинство исследователей связывают данные нейроморфологические изменения с неблагоприятными эффектами гиперкортизолемии.

Действительно, хроническое назначение фармакологических глюкокортикоидов приводит к снижению пролиферации и созревания нейронов , а концентрация эндогенных глюкокортикоидов при хроническом стрессе коррелирует с морфологическими изменениями олигодендроцитов мозолистого тела . Укорочение и снижение ветвистости дендритов в гиппокампе и префронтальной коре также регистрировалось после введения синтетических и естественных кортикостероидов в исследованиях на животных .

Гиперкотизолемия ускоряет процессы старения в нервной системе, проявляющиеся снижением количества нейронов и их аксонов, а также снижением плотности кортикостероидных рецепторов . Кроме того, глюкокортикоиды усиливают аккумуляцию бета-амилоида в астроцитах, что может ускорять формирование амилоидных бляшек, характерных для болезни Альцгеймера .

В то же время, данные ряда исследований указывают на позитивное влияние небольших доз кортикостероидов, активирующих минералкортикоидные рецепторы, на нейрогенез . Сходное положительное влияние стимуляции минералокортикоидных рецепторов продемонстрировано в отношении синтеза BDNF . Кроме того, в ряде экспериментальных исследований продемонстрировано усиление нейрогенеза на фоне двухнедельного курса антидепрессантов .

Гиперкортизолемия, нейротрофические изменения и когнитивные нарушения
Гипотрофические изменения в центральной нервной системе в условиях хронического стресса изучались в многочисленных экспериментальных исследованиях . В наибольшей степени изучены неблагоприятные эффекты хронического стресса в отношении структур гиппокампа . В последнее время было продемонстрировано развитие гипотрофии на фоне хронической стрессирующей стимуляции в структурах префронтальной коры и амигдал .
У пациентов с синдромом Кушинга также были выявлены уменьшение объёма гиппокампа и снижение результативности в тестах памяти по сравнению со здоровым контролем . При этом успешное лечение синдрома Кушинга приводит к увеличению структур гиппокампа и улучшению результативности в тестах памяти . Помимо нарушений памяти для пациентов с синдромом Кушинга характерны эмоциональная нестабильность, депрессия, тревога, импульсивность . Следует отметить, что гипертрофия надпочечников с тенденцией к хронической гиперкортизолемией является типичным проявлением хронического стресса [Судаков, Умрюхин, 2009].

Обратная корреляция между выраженностью гиперкортизолемии и объёмом эпизодической памяти продемонстрирована у пациентов с депрессией, при болезни Альцгеймера, а также в популяциях относительно здоровых пожилых людей . В исследовании D.L. Mu с соавтор. (2013) у кардиохирургических пациентов с гиперкортизолемией в первый послеоперационный день была зарегистрирована большая выраженность когнитивных нарушений через неделю после операции по сравнению с контрольной группой с нормальными показателями кортизола.
Прогрессирующее снижение эпизодической памяти с параллельным уменьшением объёма структур гиппокампа у относительно здоровых пожилых людей с гиперкортизолемией было зарегистрировано в лонгитудинальных исследованиях . Кроме того, гиперактивность гипоталамо-гипофизно-адреналовой системы в виде повышенной концентрации АКТГ на фоне стрессирующих событий и увеличенного объёма гипофиза в сочетании с уменьшенным объёмом гиппокампа характерна для популяций с высоким риском развития психотических расстройств .
Синтетические глюкокортикоиды в нормальных условиях хуже проникают через гематоэнцефалический барьер по сравнению с естественными . Тем не менее, существенные нейропсихиатрические проблемы возникают приблизительно у 6% пациентов, получающих кортикостероиды .
Справедливости ради следует отметить, что синдром Аддисона также характеризуется когнитивными нарушениями. Таким образом, неблагоприятное значение имеют как повышенная, так и сниженная активность глюкокортикоидной системы .

Генетические и средовые факторы, модифицирующие эффекты гиперкортизолемии
Индивидуальная чувствительность к эффектам гиперкортизолемии существенно варьирует, и данная вариативность определяется как генетическими, так и средовыми факторами . Важно, что генетический полиморфизм генов глюкокортикоидных и минералокортикоидных рецепторов, а также гена фермента 11β-гидроксистероид-дегидрогеназа-1 встречается относительно редко особенно в азиатских популяциях, что свидетельствует об очень высокой значимости данных генов для нормального функционирования организма . В нескольких исследованиях, изучавших связь полиморфизма генов глюкокортикоидных или минералокортикоидных рецепторов с психиатрическими расстройствами, была продемонстрирована большая частота депрессии у носителей целого ряда аллелей глюкокортикоидных и реже минералокортикоидных рецепторов .

Важно, что стрессогенные факторы во время развития в детском возрасте способны влиять на экспрессию генов глюкокортикоидных рецепторов посредством метилирования (или ацетиляции) ДНК последних, что в дальнейшем существенно влияет на экспрессию данных генов . В частности, было показано, что материнская забота приводит к повышению количества глюкокортикоидных рецепторов, что в свою очередь повышает чувствительность к обратной связи в гипоталамо-гипофизарно-надпочечниковой системе . Несмотря на тот факт, что метилирование ДНК – обратимый процесс , наследование метилированного ДНК возможно, что обеспечивает эпигенетическую передачу характеристик активности гипоталамо-гипофизарно-надпочечниковой системы, как минимум, следующему поколению .

Полиморфизм генов рецептора к кортикотропинлиберину и полиморфизм гена нейротрофического фактора BDNF также способны модифицировать риск развития депрессии на фоне стрессовых событий и, возможно, эффекты гиперкортизолемии. Так, приблизительно 30% популяции имеют аллель Val66Met, и для таких людей характерны повышенный риск депрессии в сочетании с меньшим объемом гиппокампа и эпизодической памяти .

Нейропротективным эффектом обладает также нейростероид дегидроэпиандростерон (ДГЭА) . ДГЭА имеет самую высокую концентрацию в крови по сравнению со всеми остальными стероидами, и его концентрация снижена у пациентов с депрессией. По мнению J. Herbert (2013) более важное прогностическое значение в отношении неблагоприятных эффектов гиперкортизолемии имеет не абсолютное значение концентрации кортизола, а соотношение кортизола и ДГЭА, при этом автор указывает на перспективность изучения ДГЭА как потенциального блокатора нейротрофических изменений на фоне гиперкортизолемии.

Литература

Судаков К.В., Умрюхин П.Е. Системные основы эмоционального стресса. М.: ГЭОТАР-Медиа, 2010.

Aden P, Paulsen RE, Mæhlen J, Løberg EM, Goverud IL, Liestøl K, Lømo J. Glucocorticoids dexamethasone and hydrocortisone inhibit proliferation and accelerate maturation of chicken cerebellar granule neurons. Brain Res. 2011 Oct 18;1418:32-41.

Aiello G, Horowitz M, Hepgul N, Pariante CM, Mondelli V. Stress abnormalities in individuals at risk for psychosis: a review of studies in subjects with familial risk or with "at risk" mental state. Psychoneuroendocrinology. 2012 Oct;37(10):1600-13.

Ballmaier M., Toga A.W., Blanton R.E., Sowell E.R., Lavretsky H., Peterson J., Pham D., Kumar A. Anterior cingulate, gyrus rectus, and orbitofrontal abnormalities in elderly depressed patients: an MRI-based parcellation of the prefrontal cortex. Am. J. Psychiatry 2004; 161: 99 – 108.

Bell-McGinty S., Butters M.A., Meltzer C.C., Greer P.J., Reynolds C.F., Becker J.T. Brain morphometric abnormalities in geriatric depression: long-term neurobiological effects of illness duration. Am J Psychiatry 2002; 159: 1424-1427.

Berardelli R, Karamouzis I, D"Angelo V, Zichi C, Fussotto B, Giordano R, Ghigo E, Arvat E. Role of mineralocorticoid receptors on the hypothalamus-pituitary-adrenal axis in humans. Endocrine. 2013 Feb;43(1):51-8.

Carney R.M., Freedland K.E., Veith R.C. Depression, the autonomic nervous system, and coronary heart disease. Psychosom. Med. 2005; 67 Suppl. 1: S29-33.

Charmandari E, Chrousos GP, Lambrou GI, Pavlaki A, Koide H, Ng SS, Kino T. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man. PLoS One. 2011;6(9):e25612.

Chen YF, Li YF, Chen X, Sun QF. Neuropsychiatric disorders and cognitive dysfunction in patients with Cushing"s disease. Chin Med J (Engl). 2013 Aug;126(16):3156-60.

Cremers H.R., Demenescu L.R., Aleman A., Renken R., van Tol M.J., van der Wee N.J.A., Veltman D.J., Roelofs K. Neuroticism modulates amygdala-prefrontal connectivity in response to negative emotional facial expressions. Neuroimage 2010; 49: 963-970.

Dowd JB, Simanek AM, Aiello AE. Socio-economic status, cortisol and allostatic load: a review of the literature. Int J Epidemiol 2009;38:1297-1309.

Dubovsky AN, Arvikar S, Stern TA, Axelrod L. The neuropsychiatric complications of glucocorticoid use: steroid psychosis revisited. Psychosomatics. 2012 Mar-Apr;53(2):103-15.

Dunlap KD, Jashari D, Pappas KM. Glucocorticoid receptor blockade inhibits brain cell addition and aggressive signaling in electric fish, Apteronotus leptorhynchus. Horm Behav. 2011 Aug;60(3):275-83.

Fann JR, Burington B, Leonetti A, Jaffe K, Katon WJ, Thompson RS. Psychiatric
illness following traumatic brain injury in an adult health maintenance organization
population. Arch Gen Psychiatry 2004;61:53–61.

Faravelli C, Sauro CL, Godini L, Lelli L, Benni L, Pietrini F, Lazzeretti L, Talamba GA, Fioravanti G, Ricca V. Childhood stressful events, HPA axis and anxiety disorders. World J Psychiatr 2012; 2(1):13-25.

Geerlings MI, Schoevers RA, Beekman AT, et al. Depression and risk of cognitive
decline and Alzheimer"s disease. Results of two prospective community-based
studies in The Netherlands. Br J Psychiatry 2000;176:568–75.

Gilabert-Juan J, Castillo-Gomez E, Pérez-Rando M, Moltó MD, Nacher J. Chronic stress induces changes in the structure of interneurons and in the expression of molecules related to neuronal structural plasticity and inhibitory neurotransmission in the amygdala of adult mice. Exp Neurol. 2011 Nov;232(1):33-40.

Goyal T.M., Idler E.L., Krause T.J., Contrada R.J. Quality of life following cardiac surgery: impact of the severity and course of depressive symptoms. Psychosom. Med. 2005; 67(5); 759-65.

Grant N, Hamer M, Steptoe A. Social isolation and stress-related cardiovascular, lipid, and cortisol responses. Ann Behav Med 2009;37:29-37.

Gur R.C., Erwin R.J., Gur R.E., Zwil A.S., Heimberg C., Kraemer H.C. Facial emotion discrimination: II. Behavioral findings in depression. Psychiatry Research 1992; 42: 241-51.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: