Про заболевания ЖКТ

Для того, чтобы биомеханизмы регулирующие артериальное давление (АД) адекватно реагировали на потребности организма к ним должна поступать информация об этих потребностях. Эту функцию выполняют . Хеморецепторы реагируют на недостаток кислорода в крови, избыток углекислого газа и ионов водорода, сдвиг реакции крови (pH крови) в кислую сторону. Хеморецепторы находятся по всей сосудистой системе. Особенно много этих клеток в общей сонной артерии и в аорте. Недостаток кислорода в крови, избыток углекислого газа и ионов водорода, сдвиг pH крови в кислую сторону возбуждают хеморецепторы. Импульсы от хеморецепторов по нервным волокнам поступают в (СДЦ) . СДЦ состоит из нервных клеток (нейронов), которые регулируют тонус сосудов, силу, частоту сердечных сокращений, объём циркулирующей крови, то есть – артериальное давление. Своё влияние на тонус сосудов, силу и частоту сердечных сокращений, объём циркулирующей крови нейроны СДЦ реализуют через нейроны (ВНС), которые непосредственно влияют на тонус сосудов, силу и частоту сердечных сокращений.

СДЦ состоит из прессорных, депрессорных и сенсорных нейронов .

Увеличение возбуждения прессорных нейронов увеличивает возбуждение (тонус) нейронов симпатической ВНС и уменьшает тонус парасимпатической ВНС. Это приводит к увеличению тонуса сосудов (спазму сосудов, уменьшению просвета сосудов), к увеличению силы и частоты сердечных сокращений, то есть – к увеличению АД.

Депрессорные нейроны уменьшают возбуждение прессорных нейронов и, таким образом, косвенно способствуют расширению сосудов (уменьшению тонуса сосудов), уменьшают силу и частоту сердечных сокращений, то есть – снижению АД.

Сенсорные (чувствительные) нейроны в зависимости от поступившей к ним информации от рецепторов, оказывают возбуждающее действие на прессорные или депрессорные нейроны СДЦ.

Функциональная активность прессорных и депрессорных нейронов регулируется не только сенсорными нейронами СДЦ, но и другими нейронами головного мозга. Опосредовано через гипоталамус нейроны двигательной зоны коры головного мозга оказывают возбуждающее действие на прессорные нейроны. Нейроны коры головного мозга влияют на СДЦ через нейроны гипоталамической области. Сильные эмоции: гнев, страх, тревога, волнение, большая радость, горе могут вызывать возбуждение прессорных нейронов СДЦ.

Прессорные нейроны возбуждаются самостоятельно, если находятся в состоянии ишемии (состоянии недостаточного поступления к ним кислорода с кровью). При этом АД повышается очень быстро и очень сильно.

Волокна симпатической ВНС густо оплетают сосуды, сердце, заканчиваются многочисленными разветвлениями в различных органах и тканях организма, в том числе, и около клеток, которые называются трансдукторами. Эти клетки в ответ на повышение тонуса симпатической ВНС начинают синтезировать и выделять в кровь вещества, влияющие на повышение АД. Трансдукторами являются :

Хромаффинные клетки мозгового слоя надпочечников

Эти клетки при увеличении тонуса симпатической ВНС начинают синтезировать и выделять в кровь гормоны: адреналин и норадреналин. Эти гормоны в организме оказывают те же эффекты, что и симпатическая ВНС. В отличие от влияния симпатической ВНС системы эффекты адреналина и норадреналина надпочечников более продолжительные и распространённые.

Юкст-гломерулярные клетки почек

Эти клетки при увеличении тонуса симпатической ВНС, а также при ишемии почек (состоянии недостаточного поступления к тканям почек кислорода с кровью) начинают синтезировать и выделять в кровь протеолитический фермент ренин. Ренин в крови расщепляет другой белок ангиотензиноген с образованием белка ангиотензина 1 . Другой фермент крови – АПФ (Ангиотензин превращающий фермент) расщепляет ангиотензин 1 с образованием белка ангиотензина 2.

Ангиотензин 2 :

  1. оказывает на сосуды очень сильное и продолжительное сосудосуживающее действие. Своё действие на сосуды ангиотензин 2 реализует через ангиотензин-рецепторы (АТ).
  2. стимулирует синтез и выделение в кровь клетками клубочковой зоны надпочечников альдостерона, который задерживает натрий, а, значит, и воду в организме. Это приводит:
    • к увеличению объёма циркулирующей крови;
    • задержка натрия в организме приводит к тому, что натрий проникает в эндотелиальные клетки, покрывающие кровеносные сосуды изнутри, увлекая за собой внутрь клетки воду. Эндотелиальные клетки увеличиваются в объёме. Это приводит к сужению просвета сосуда. Уменьшение просвета сосуда увеличивает его сопротивление. Увеличение сопротивления сосуда увеличивает силу сердечных сокращений. Задержка натрия повышает чувствительность ангиотензин-рецепторов к ангиотензину 2. Это ускоряет и усиливает сосудосуживающее действие агиотензина 2.
  3. стимулирует клетки гипоталамуса на синтез и выделение в кровь антидиуретического гормона вазопрессина и клетками аденогипофиза адренокортикотропного гормона (АКТГ). АКТГ стимулирует синтез клетками пучковой зоны коркового слоя надпочечников глюкокортикоидов. Наибольшим биологическим действием обладает кортизол. Кортизол потенцирует увеличение АД.

Всё это в частности и в совокупности приводит к увеличению АД.

Нейроны гипоталамических супраоптического и паравентрикулярного ядер синтезируют антидиуретический гормон вазопрессин. Через свои отростки нейроны выделяют вазопрессин в заднюю долю гипофиза, откуда он поступает в кровь. Вазопрессин оказывает сосудосуживающее действие, задерживает воду в организме. Это приводит к увеличению объёма циркулирующей крови и к повышению АД. Кроме того, вазопрессин усиливает сосудосуживающее действие адреналина, норадреналина и ангиотензина 2.

Информация об объёме циркулирующей крови и силе сердечных сокращений поступает в СДЦ от барорецепторов и рецепторов низкого давления.

– это разветвления отростков чувствительных нейронов в стенке артериальных сосудов. Барорецепторы преобразуют раздражения от растяжения стенки сосуда в нервный импульс. Барорецепторы находятся по всей сосудистой системе. Наибольшее их количество в дуге аорты и в каротидном синусе. Барорецепторы возбуждаются от растяжения. Увеличение силы сердечных сокращений увеличивает растяжение стенок артериальных сосудов в местах нахождения барорецепторов. Возбуждение барорецепторов увеличивается прямо пропорционально увеличению силы сердечных сокращений. Импульсация от них поступает к сенсорным нейронам СДЦ. Сенсорные нейроны СДЦ возбуждают депрессорные нейроны СДЦ, которые уменьшают возбуждение прессорных нейронов СДЦ. Это приводит к уменьшению тонуса симпатической ВНС и к повышению тонуса парасимпатической ВНС, что приводит к уменьшению силы и частоты сердечных сокращений, расширению сосудов, то есть – к понижению АД. Наоборот, уменьшение силы сердечных сокращений ниже нормальных показателей уменьшает возбуждение барорецепторов, уменьшает импульсацию от них к сенсорным нейронам СДЦ. В ответ на это сенсорные нейроны СДЦ возбуждают прессорные нейроны СДЦ. Это приводит к увеличению тонуса симпатической ВНС и к уменьшению тонуса парасимпатической ВНС, что приводит к увеличению силы и частоты сердечных сокращений, сужению сосудов, то есть – к повышению АД.

В стенках предсердий и лёгочной артерии находятся рецепторы низкого давления , которые возбуждаются при уменьшении АД в связи с уменьшением объёма циркулирующей крови.

При кровопотери уменьшается объём циркулирующей крови, АД снижается. Возбуждение барорецепторов уменьшается, а возбуждение рецепторов низкого давления увеличивается. Это приводит к повышению АД. По мере того, как АД приближается к норме возбуждение барорецепторов увеличивается, а возбуждение рецепторов низкого давления уменьшается. Это предохраняет от увеличения АД больше нормы. При кровопотере восстановление объёма циркулирующей крови достигается переходом крови из депо (селезёнка, печень) в кровяное русло. Примечание: В селезёнке депонировано около 500 мл крови, а в печени и в сосудах кожи около 1 литра крови.

Объём циркулирующей крови контролируется и поддерживается почками за счёт образования количества мочи. При систолическом АД меньше 80 мм.рт.ст. моча не образуется вовсе, при нормальном АД – нормальное образование мочи, при повышенном АД мочи образуется прямо пропорционально больше (гипертензивный диурез). При этом увеличивается выведение с мочой натрия (гипертензивный натрийурез), а вместе с натрием выводится и вода.

При увеличении объёма циркулирующей крови больше нормы, нагрузка на сердце увеличивается. В ответ на это кардиомициты предсердий отвечают синтезом и выделением в кровь белка – предсердного натрийуретического пептида (ANP) , который увеличивает выведение с мочой натрия, а, значит, и воды.

Клетки организма могут сами регулировать поступление к ним с кровью кислорода и питательных веществ. В условиях гипоксии (ишемии, недостаточного поступления кислорода) клетки выделяют вещества (например, аденозин, оксид азота NO, простациклин, углекислый газ, аденозинфосфаты, гистамин, ионы водорода (молочная кислота), ионы калия, магния), которые расширяют прилегающие к ним артериолы, тем самым, увеличивая к себе приток крови, а, соответственно, кислорода и питательных веществ. В почках, например, при ишемии клетки мозгового слоя почек начинают синтезировать и выделять в кровь кинины и простагландины, которые обладают сосудорасширяющим действием. В результате – артериальные сосуды почек расширяются, кровоснабжение почек увеличивается. Примечание: при избыточном употреблении соли с пищей синтез клетками почек кининов и простагландинов уменьшается. Кровь устремляется прежде всего туда, где артериолы больше расширены (в место наименьшего сопротивления). Хеморецепторы запускают механизм повышения АД, чтобы ускорить доставку клеткам кислорода и питательных веществ, которых клеткам не хватает. По мере того, как состояние ишемии устранено, клетки перестают выделять вещества, расширяющие прилегающие артериолы, а хеморецепторы прекращают стимулировать повышение АД.

: внутри артерий (артериальное давление), капилляров (капиллярное давление) и вен (венозное давление).

Артериальное давление зависит от силы сокращений сердца, эластичности артерий и главным образом сопротивления, которое оказывают току крови периферические сосуды - артериолы и капилляры. В известной степени величина артериального давления зависит и от свойств крови - ее вязкости, определяющей внутреннее сопротивление, а также количества ее в организме.

Во время сокращения (систолы) левого желудочка в аорту выбрасывается около 70 мл крови; такое количество крови не может сразу пройти через капилляры, и поэтому эластичная аорта несколько растягивается, а давление крови в ней повышается (систолическое давление). Во время диастолы, когда аортальный клапан сердца закрыт, стенки аорты и крупных сосудов, сокращаясь под влиянием собственной эластичности, проталкивают избыток находящейся в этих сосудах крови в капилляры; давление постепенно понижается и к концу диастолы достигает минимальной величины (диастолическое давление). Разницу между систолическим и диастолическим давлением называют пульсовым давлением.

Капиллярное давление зависит от давления крови в артериолах, количества функционирующих в данный момент капилляров и их стенки.

Величина венозного давления зависит от тонуса венозных сосудов и давления крови в правом предсердии. По мере удаления от сердца кровяное давление снижается. Так, например, в аорте кровяное давление 140/90 мм рт. ст. (первая цифра означает систолическое давление, вторая - диастолическое), в крупных артериальных сосудах - 110/70 мм рт. ст. В капиллярах кровяное давление снижается с 40 мм рт. ст. до 10-15 мм рт. ст. В верхней и нижней полых венах и крупных венах шеи давление может оказаться отрицательным.

Регуляция кровяного давления . Кровяное давление обеспечивает продвижение крови по капиллярам организма, осуществление обменных процессов между капиллярами и межклеточной жидкостью и в конечном итоге нормальное протекание обменных процессов в тканях.

Постоянство кровяного давления поддерживается по принципу саморегуляции. Согласно этому принципу любое отклонение какой-либо жизненно важной функции от нормы является стимулом для возвращения ее к нормальному уровню.

Любое отклонение кровяного давления в сторону повышения или понижения вызывает возбуждение специальных барорецепторов, расположенных в стенках кровеносных сосудов. Особенно велико скопление их в дуге аорты, каротидном синусе, сосудах сердца, мозга и т. п. Возбуждения от по афферентным нервным волокнам поступают к сосудодвигательному центру, расположенному в продолговатом мозге, и изменяют его . Отсюда импульсы направляются к кровеносным сосудам, изменяя тонус сосудистой стенки и, таким образом, величину периферического сопротивления току крови. Одновременно изменяется и деятельность сердца. Вследствие этих влияний отклонившееся кровяное давление возвращается к нормальному уровню.

Кроме того, на сосудодвигательный центр оказывают влияние особые вещества, вырабатывающиеся в различных органах (так называемого гуморальные воздействия). Таким образом, уровень тонического возбуждения сосудодвигательного центра определяется взаимодействием на него двух видов влияний: нервных и гуморальных. Одни влияния ведут к повышению тонуса и возрастанию кровяного давления - так называемые прессорные влияния; другие - снижают тонус сосудодвигательного центра и оказывают, таким образом, депрессорный эффект.

Гуморальная регуляция уровня кровяного давления осуществляется в периферических сосудах путем воздействия на стенки сосудов особых веществ (адреналин, норадреналин и др.).

Методы измерения и регистрации кровяного давления . Различают прямой и непрямой методы измерения кровяного давления. Прямой метод в клинической практике используют для измерения венозного давления (см. ). У здоровых людей венозное давление 80-120 мм вод. ст.. Наиболее распространенным методом непрямого измерения артериального давления является аускультативный метод Короткова (см. Сфигмоманометрия). Во время исследования больной сидит или лежит. Рука отводится в сторону сгибательной поверхностью вверх. Аппарат устанавливают таким образом, чтобы артерия, на которой измеряют артериальное давление, и аппарат находились на уровне сердца. В резиновую манжету, надетую на обследуемого и соединенную с манометром, нагнетают воздух. Одновременно при помощи стетоскопа прослушивают артерию ниже места наложения манжеты (обычно в локтевой ямке). Воздух в манжету нагнетают до полного сжатия просвета артерии, чему соответствует прекращение выслушивания тона на артерии. Затем из манжеты постепенно выпускают воздух и следят за показаниями манометра. Как только систолическое давление в артерии превысит давление в манжете, кровь с силой проходит через сдавленный участок сосуда, и легко прослушивается шум движущейся крови. Этот момент отмечают на шкале манометра и считают за показатель систолического артериального давления. При дальнейшем выпускании воздуха из манжеты препятствие току крови становится все меньшим, шумы постепенно ослабевают и, наконец, исчезают вовсе. Показания манометра в этот момент считают величиной диастолического артериального давления.

В норме артериальное давление в плечевой артерии человека в возрасте 20-40 лет равно в среднем 120/70 мм рт. ст. С возрастом величина артериального давления, особенно систолического, повышается в связи с уменьшением эластичности стенок крупных артерий. Для ориентировочной оценки высоты артериального давления в зависимости от возраста можно пользоваться формулой:
АДмакс.= 100 + В, где АДмакс -систолическое давление (в миллиметрах ртутного столба), В - возраст исследуемого в годах.

Систолическое давление в физиологических условиях колеблется от 100 до 140 мм рт. ст., диастолическое давление - от 60 до 90 мм рт. ст. Систолическое давление от 140 до 160 мм рт. ст. считают опасным в отношении возможности развития .

Для регистрации артериального давления применяют осциллографию (см.).

Поддержание нормального уровня давления крови в магистральных артериях является важнейшим условием, необходимым для обеспечения кровотока, адекватного потребностям организма. Регуляция уровня АД осуществляется сложной многоконтурной функциональной системой, в которой используются принципы регуляции давления по отклонению и (или) по возмущению. Схема такой системы, простроенной на основе принципов теории функциональных систем П.К. Анохина, представлена на рис. 1.17. Как и в любой другой функциональной системе регуляции параметров внутренней среды организма, в ней можно выделить регулируемый показатель, которым является уровень давления крови в аорте, крупных артериальных сосудах и полостях сердца.

Рис. 1.17. 1-3 - импульсация от экстеро-, интеро-, проприорецепторов

Непосредственная оценка уровня давления крови осуществляется барорецепторами аорты, артерий и сердца. Эти рецепторы являются механорецепторами, образованы окончаниями афферентных нервных волокон и реагируют на степень растяжения давлением крови стенки сосудов и сердца изменением числа нервных импульсов. Чем выше давление, тем большая частота нервных импульсов генерируется в нервных окончаниях, образующих барорецепторы. От рецепторов по афферентным нервным волокнам IX и X пар черепных нервов потоки сигналов о текущей величине давления крови передаются в нервные центры, регулирующие кровообращение. В них поступает информация от хеморецепторов, контролирующих напряжение газов крови, от рецепторов мыщц, суставов, сухожилий, а также от экстерорецепторов. Активность нейронов центров, регулирующих давление крови и кровоток, зависит также от влияния на них высших отделов головного мозга.

Одной из важных функций этих центров является формирование задаваемого для регуляции уровня (set point) артериального давления крови. На основе сравнения информации о величине текущего давления, поступающей в центры, с его заданным уровнем для регуляции, нервные центры формируют поток сигналов, передающихся к эффекторным органам. Изменяя их функциональную активность, можно непосредственно влиять на уровень артериального кровяного давления, приспосабливая его величину к текущим потребностям организма.

К эффекторным органам относятся: сердце, через влияние на насосную функцию которого (ударный объем, ЧСС, МОК), можно воздействовать на уровень АД; гладкие миоциты сосудистой стенки, через влияние на тонус которых можно изменять сопротивление сосудов кровотоку, артериальное давление и ток крови в органах и тканях; почки, через влияние на процессы выделения и реабсорбции воды в которых можно изменять объем циркулирующей крови (ОЦК) и ее давление; депо крови, красный костный мозг, сосуды микроциркулятор- ного русла, в которых через депонирование, образование и разрушение эритроцитов, процессы фильтрации и реабсорбции можно воздействовать на ОЦК, ее вязкость и давление. Через влияние на эти эффекторные органы и ткани механизмы нейрогуморальной регуляции организма (МНГР) могут изменять давление крови в соответствии с заданным в ЦНС уровнем, приспосабливая его к потребностям организма.

Функциональная система регуляции кровообращения располагает различными механизмами влияния на функции эф- фекторных органов и тканей. Среди них механизмы автономной нервной системы, гормоны надпочечников, используя которые, можно изменить работу сердца, просвет (сопротивление) сосудов и оказать влияние на артериальное давление крови мгновенно (за секунды). В функциональной системе для регуляции кровообращения широко применяются сигнальные молекулы (гормоны, сосудоактивные вещества эндотелия и другой природы). Для их высвобождения и реализации влияния на клетки-мишени (гладкие миоциты, эпителий почечных канальцев, кроветворные клетки и др.) необходимы десятки минут, а для изменения ОЦК и ее вязкости может потребоваться более продолжительное время. Поэтому по скорости реализации влияния на уровень АД выделяют механизмы быстрого реагирования, среднесрочного реагирования, медленного реагирования и длительного влияния на артериальное давление крови.

> Механизмы быстрого реагирования и быстрого влияния на изменение АД реализуются через рефлекторные механизмы автономной нервной системы (АНС). Принципы строения нейронных путей рефлексов АНС рассмотрены в главе, посвященной автономной нервной системе.

Рефлекторные реакции на изменения уровня АД могут за секунды изменить величину давления крови и тем самым изменить скорость кровотока в сосудах, транскапиллярный обмен. Механизмы быстрого реагирования и рефлекторной регуляции АД крови включаются при резком изменении АД крови, изменении газового состава крови, ишемии головного мозга, психоэмоциональном возбуждении.

Любой рефлекс инициируется посылкой сигналов рецепторов в центры рефлекса. Места скопления рецепторов, реагирующих на один тип воздействий, принято называть рефлексогенными зонами. Уже кратко упоминалось, что рецепторы, воспринимающие изменения величины кровяного давления, называют барорецепторами или механорецепторами растяжения. Они реагируют на колебания АД крови, вызывающие большее или меньшее растяжение стенок сосудов, изменением разности потенциалов на рецепторной мембране. Основное количество барорецепторов сосредоточено в рефлексогенных зонах крупных сосудов и сердца. Важнейшими из них для регуляции давления крови являются зоны дуги аорты и каротидного синуса (место разветвления общей сонной артерии на внутреннюю и наружную сонные артерии). В этих рефлексогенных зонах сосредоточены не только барорецепторы, но и хеморецепторы, воспринимающие изменение напряжения С0 2 (рС0 2) и 0 2 (р0 2) в артериальной крови.

Афферентные нервные импульсы, возникающие в рецепторных нервных окончаниях, проводятся в продолговатый мозг. От рецепторов дуги аорты они идут по левому депрес- сорному нерву, который у человека проходит в стволе блуждающего нерва (правый депрессорный нерв проводит импульса- цию от рецепторов, расположенных в начале плечеголовного артериального ствола). Афферентные импульсы от рецепторов каротидного синуса проводятся в составе веточки синокаро- тидного нерва, называемой также нервом Геринга (в составе языкоглоточного нерва).

Барорецепторы сосудов реагируют изменением частоты генерации нервных импульсов на нормальные колебания уровня АД крови. Во время диастолы при понижении давления (до 60-80 мм рт. ст.) число генерируемых нервных импульсов снижается, а при каждой систоле желудочков, когда давление крови в аорте и артериях повышается (до 120-140 мм рт. ст.), частота импульсов, посылаемых этими рецепторами в продолговатый мозг, увеличивается. Учащение афферентной импульсации прогрессивно нарастает, если давление крови возрастает выше нормального. Афферентные импульсы от барорецепторов поступают к нейронам депрессорного отдела центра кровообращения продолговатого мозга и повышают их активность. Между нейронами депрессорного и прессорного отделов этого центра имеются реципрокные отношения, поэтому при повышении активности нейронов депрессорного отдела тормозится активность нейронов прессорного отдела сосудодвигательного центра.

Нейроны прессорного отдела посылают аксоны к преган- глионарным нейронам симпатической нервной системы спинного мозга, которые через ганглионарные нейроны иннервируют сосуды. В результате снижения притока нервных импульсов к преганглионарным нейронам их тонус уменьшается и частота нервных импульсов, посылаемых ими к ганглионарным нейронам и далее к сосудам, уменьшается. Количество норадреналина, высвобождаемого из постганглионарных нервных волокон, уменьшается, сосуды расширяются и АД снижается (рис. 1.18).

Параллельно с инициацией рефлекторного расширения артериальных сосудов на повышение давления крови развивается быстрое рефлекторное торможение насосной функции


Рис. 1.18. Влияние симпатической нервной системы на просвет артериальных сосудов мышечного типа и АД крови при ее низком (слева) и высоком (справа) тонусе сердца. Оно возникает вследствие посылки усиленного потока сигналов от барорецепторов по афферентным волокнам блуждающего нерва к нейронам ядра нерва. При этом активность последних возрастает, увеличивается поток эфферентных сигналов, посылаемых по волокнам блуждающего нерва к клеткам водителя ритма сердца и миокарду предсердий. Частота и сила сокращений сердца уменьшаются, что ведет к уменьшению МОК и способствует снижению повысившегося АД крови. Таким образом, барорецепторы следят не только за изменением артериального давления крови, их сигналы используются для регуляции давления при его отклонении от нормального уровня. Эти рецепторы и возникающие с них рефлексы иногда называют «обуздывателями кровяного давления».

Иная направленность рефлекторной реакции возникает в ответ на снижение АД крови. Она проявляется сужением сосудов и усилением работы сердца, которые способствуют повышению АД крови.

Рефлекторное сужение сосудов и усиление работы сердца наблюдаются при повышении активности хеморецепторов, расположенных в аортальном и каротидном тельцах. Эти рецепторы активны уже при нормальном напряжении в артериальной крои рС0 2 и р0 2 . От них постоянно идет поток афферентных сигналов к нейронам прессорного отдела сосудодвигательного центра и к нейронам дыхательного центра продолговатого мозга. Активность рецепторов 0 2 возрастает при снижении р0 2 в плазме артериальной крови, а активность рецепторов С0 2 возрастает при увеличении рС0 2 и снижении pH. Это сопровождается увеличением посылки сигналов в продолговатый мозг, повышением активности нейронов прессорного отдела и активности преганглионарных нейронов симпатического отдела АНС в спинном мозге, которые посылают эфферентные сигналы большей частоты к сосудам и сердцу. Сосуды суживаются, сердце увеличивает частоту и силу сокращений, что ведет к повышению АД крови.

Описанные рефлекторные реакции кровообращения называют собственными, так как их рецепторное и эффекторное звено принадлежит к структурам сердечно-сосудистой системы. Если рефлекторные влияния на кровообращение осуществляются с рефлексогенной зоны, находящейся вне сердца и сосудов, то такие рефлексы называют сопряженными. Ряд из них (рефлексы Гольца, Данини - Ашнера и др.) рассмотрены в главе, посвященной регуляции сердечной деятельности. Рефлекс

Гольца проявляется тем, что при задержке дыхания в положении глубокого вдоха и повышении давления в брюшной полости происходит снижение частоты сокращений сердца. Если такое урежение превышает 6 сокращений в минуту, то это свидетельствует о повышенной возбудимости нейронов ядер блуждающего нерва. Воздействия на рецепторы кожи могут вызвать как торможение, так и активацию сердечной деятельности. Например, при раздражении холодовых рецепторов кожи в области живота происходит снижение частоты сокращений сердца.

При психоэмоциональном возбуждении за счет возбуждающих нисходящих влияний активируются нейроны прессорного отдела сосудодвигательного центра, что ведет к активации нейронов симпатической нервной системы и повышению АД. Подобная реакция развивается и при ишемии ЦНС.

Нервно-рефлекторное влияние на АД крови достигается воздействием норадреналина и адреналина посредством стимуляции адренорецепторов и внутриклеточных механизмов гладких миоцитов сосудов и миоцитов сердца.

Центры регуляции кровообращения располагаются в спинном, продолговатом мозге, гипоталамусе и коре мозга. Влияние на уровень АД крови и работу сердца могут оказывать многие другие структуры ЦНС. Эти влияния реализуются преимущественно через их связи с центрами продолговатого и спинного мозга.

К центрам спинного мозга относятся преганглионарные нейроны симпатического отдела АНС (боковые рога С8- L3 сегментов), которые посылают аксоны к ганглионарным нейронам, расположенным в превертебральных и паравертебральных ганглиях и непосредственно иннервирующим гладкие миоциты сосудов, а также преганглионарные нейроны боковых рогов (Thl-Th3), которые регулируют работу сердца через модуляцию активности ганглионарных нейронов преимущественно шейных узлов).

Нейроны симпатической нервной системы боковых рогов спинного мозга являются эффекторными. Через них центры регуляции кровообращения продолговатого мозга и более высоких уровней ЦНС (гипоталамус, ядро шва, варолиев мост, околоводопроводное серое вещество среднего мозга) оказывают влияние на тонус сосудов и работу сердца. В то же время экспериментальные и клинические наблюдения свидетельствуют о том, что эти нейроны рефлекторно регулируют кровоток в отдельных областях сосудистого русла, а также самостоятельно обеспечивают регуляцию уровня АД при нарушении связи спинного мозга с головным.

Возможность регуляции артериального давления крови нейронами симпатической нервной системы спинного мозга основана на том, что их тонус определяется не только притоком сигналов с вышележащих отделов ЦНС, но и притоком к ним нервных импульсов от механо-, хемо-, термо- и болевых рецепторов сосудов, внутренних органов, кожи, опорно-двигательного аппарата. При изменении притока к этим нейронам афферентных нервных импульсов их тонус также изменяется, что проявляется рефлекторным сужением или расширением сосудов и повышением или снижением АД. Такие рефлекторные влияния на просвет сосудов со стороны спинальных центров регуляции кровообращения обеспечивают относительно быстрое рефлекторное повышение или восстановление АД крови после его снижения в условиях разрыва связей спинного мозга с головным.

В продолговатом мозге находится сосудодвигательный центр , открытый Ф.В. Овсянниковым. Он является частью сердечно-сосудистого, или кардиоваскулярного, центра ЦНС (см. рефлекторную регуляцию работы сердца в этой главе). В частности, в ретикулярной формации продолговатого мозга вместе с нейронами, контролирующими тонус сосудов, расположены нейроны центра регуляции сердечной деятельности. Сосудодвигательный центр представлен двумя отделами: прессорным, активация нейронов которого вызывает сужение сосудов и увеличение АД крови, и депрессорным, активация нейронов которого приводит к снижению АД.

Как видно из рис. 1.19, нейроны прессорного и депрессор- ного отделов получают различные афферентные сигналы и по- разному связаны с эффекторными нейронами. Нейроны прессорного отдела получают афферентные сигналы по волокнам IX и X черепных нервов от хеморецепторов сосудов, сигналы от хеморецепторов продолговатого мозга, от нейронов дыхательного центра, нейронов гипоталамуса, а также от нейронов коры большого мозга.

Аксоны нейронов прессорного отдела образуют возбуждающие синапсы на телах преганглионарных симпатических нейронов тораколюмбального отдела спинного мозга. При повышении активности нейроны прессорного отдела посылают возросший поток эфферентных нервных импульсов к нейронам

Рис. 1.19.

симпатического отдела спинного мозга, повышая их активность и тем самым активность ганглионарных нейрнов, осуществляющих иннервацию сердца и сосудов (рис. 1.20).

Преганглонарные нейроны спинальных центров даже в условиях покоя обладают тонической активностью и постоянно посылают сигналы к ганглионарным нейронам, которые, в свою очередь, посылают к сосудам редкие (частота 1-3 Гц) нервные импульсы. Одной из причин генерации этих нервных импульсов является поступление к нейронам спинальных центров нисходящих сигналов от части нейронов прессорного


Рис. 1.20.

отдела, обладающих спонтанной, пейсмекероподобной активностью. Таким образом, спонтанная активность нейронов прессорного отдела, преганглионарных спинальных центров регуляции кровообращения и ганглионарных нейронов являются в условиях покоя источником тонической активности симпатических нервов, оказывающих на сосуды вазоконстрикторное действие.

Повышение активности преганглионарных нейронов, вызванное усилением притока сигналов прессорного отдела, оказывает стимулирующее влияние на работу сердца, тонус артериальных и венозных сосудов. Кроме того, активированные нейроны прессорного отдела способны тормозить активность нейронов депрессорного отдела.

Отдельные пулы нейронов прессорного отдела могут оказывать более сильное действие на определенные области сосудистого русла. Так, возбуждение одних из них ведет к большему сужению сосудов почек, возбуждение других - к существенному сужению сосудов желудочно-кишечного тракта и меньшему сужению сосудов скелетных мышц. Ингибирование активности нейронов прессорного отдела ведет к понижению давления крови вследствие устранения вазоконстрикторного влияния, подавления или потери рефлекторного стимулирующего влияния симпатической нервной системы на работу сердца при раздражении хемо- и барорецепторов.

Нейроны депрессорного отдела сосудодвигательного центра продолговатого мозга получают афферентные сигналы по волокнам IX и X черепных нервов от барорецепторов аорты, сосудов, сердца, а также от нейронов гипоталамического центра регуляции кровообращения, от нейронов лимбической системы, коры большого мозга. При повышении их активности они тормозят активность нейронов прессорного отдела и могут через тормозные синапсы понижать или устранять активность преганглионарных нейронов симпатического отдела спинного мозга.

Между депрессорным и прессорным отделами существуют реципрокные взаимоотношения. Если под влиянием афферентных сигналов депрессорный отдел возбуждается, то это приводит к торможению активности прессорного отдела и последний посылает меньшую частоту эфферентных нервных импульсов к нейронам спинного мозга, вызывая меньшее сужение сосудов. Снижение активности спинальных нейронов может привести к прекращению посылки ими эфферентных нервных импульсов к сосудам, вызывая расширение сосудов до просвета, определяемого уровнем базального тонуса гладких миоцитов их стенки. При расширении сосудов кровоток через них увеличивается, уменьшается величина ОПС и давление крови снижается.

В гипоталамусе также имеются группы нейронов, активация которых вызывает изменение работы сердца, реакции сосудов и влияет на АД крови. Эти влияния могут быть реализованы гипоталамическими центрами через изменение тонуса АНС. Напомним, что увеличение активности нейронных центров переднего гипоталамуса сопровождается повышением тонуса парасимпатического отдела АНС, снижением насосной функции сердца и АД крови. Увеличение нейронной активности в области заднего гипоталамуса сопровождается повышением тонуса симпатического отдела АНС, усилением работы сердца и повышением АД крови.

Гипоталамические центры регуляции кровообращения имеют ведущее значение в механизмах интеграции функций сердечно-сосудистой системы и других вегетативных функций организма. Известно, что сердечно-сосудистая система является одной из важнейших в механизмах терморегуляции, а ее активное использование в процессах терморегуляции инции- руется гипоталамическими центрами регуляции температуры тела (см. «Терморегуляция»). Система кровообращения активно реагирует на изменение в крови уровня глюкозы, осмотического давления крови, к которым высокочувствительны нейроны гипоталамуса. В ответ на снижение уровня глюкозы в крови повышается тонус симпатической нервной системы, а при повышении осмотического давления крови в гипоталамусе образуется возопрессин - гормон, оказывающий суживающее действие на сосуды. Гипоталамус влияет на кровообращение посредством других гормонов, секреция которых контролируется симпатическим отделом АНС (адреналин, норадреналин) и гипоталамическими либеринами и статинами (кортикостероиды, половые гормоны).

Структуры лимбической системы, являющиеся частью эмоциогенных областей мозга, через связи с гипоталамическими центрами регуляции кровообращения могут оказывать выраженное влияние на работу сердца, тонус сосудов и АД крови. Пример такого влияния - хорошо известное увеличение ЧСС, УО и АД крови при волнении, недовольстве, гневе, эмоциональных реакциях другого происхождения.

Кора больших полушарий также оказывает влияние на работу сердца, тонус сосудов и АД крови через связи с гипоталамусом и нейронами сердечно-сосудистого центра продолговатого мозга. Кора большого мозга может влиять на кровообращение путем участия в регуляции выброса в кровь гормонов надпочечников. Локальное раздражение двигательной зоны коры вызывает увеличение кровотока в мышцах, в которых инициируется сокращение. Важное значение играют рефлекторные механизмы. Известно, что за счет образования условных сосудодвигательных рефлексов изменения кровообращения могут наблюдаться в предстартовом состоянии, еще до начала сокращения мышц, когда повышается насосная функция сердца, увеличивается АД крови и возрастает интенсивность кровотока в мышцах. Такие изменения кровообращения подготавливают организм к выполнению физической и эмоциональной нагрузки.

> Механизмы среднесрочного реагирования на изменение давления крови начинают действовать через десятки минут и часы.

Среди механизмов среднесрочного реагирования важная роль принадлежит механизмам почки. Так, при продолжительном снижении АД и тем самым снижении кровотока через почку клетки ее юкстагломерулярного аппарата реагируют выбросом в кровь фермента ренина, под действием которого из а 2 - глобулина плазмы крови образуется ангиотензин I (AT I), а из него под влияем ангиотензинпревращающего фермента (АПФ) образуется AT II. AT II вызывает сокращение гладкомышечных клеток стенки сосудов и оказывает сильное сосудосуживающее влияние на артерии и вены, увеличивает возврат венозной крови к сердцу, УО и повышает АД крови. Повышение уровня ренина в крови наблюдается также при повышении тонуса симпатического отдела АНС и снижении уровня ионов Na + в крови.

К механизмам среднесрочного реагирования на изменение АД крови относится изменение транскапиллярного обмена водой между кровью и тканями. При длительном увеличении АД возрастает фильтрация воды из крови в ткани. Из-за выхода жидкости из сосудистого русла ОЦК уменьшается, что способствует снижению кровяного давления. Обратные явления могут развиться при понижении АД крови. Следствием избыточной фильтрации воды в ткани при повышении АД крови может быть развитие отека тканей, наблюдаемое у больных артериальной гипертензией.

В число среднесрочных механизмов регуляции АД крови включают механизмы, связанные с реакцией гладких миоцитов сосудистой стенки на длительное повышение АД. При продолжительном повышении АД наблюдается стресс-релаксация сосудов - расслабление гладких миоцитов, способствующее расширению сосудов, снижению периферического сопротивления току крови и уменьшению АД крови.

> Механизмы медленного реагирования на изменение давления крови и нарушение его регуляции начинают действовать через дни и месяцы после его изменения. Важнейшими из них являются почечные механизмы регуляции АД, реализуемые через изменение ОЦК. Изменение ОЦК достигается посредством влияния сигнальных молекул ренин-ангиотензин Н-альдостероновой системы, натрийуретического пептида (НУП) и антидиуретического гормона (АДГ) на процессы фильтрации и реабсорбции ионов Na + , фильтрации и реабсорбции воды и выведения мочи.

При высоком АД крови выделение жидкости с мочой возрастает. Это приводит к постепенному снижению количества жидкости в организме, уменьшению ОЦК, снижению венозного возврата крови к сердцу, уменьшению УО, МОК и величины АД. Главную роль в регуляции почечного диуреза (объема выделяемой мочи) играют АДГ, альдостерон и НУП. При увеличении содержания в крови АДГ и альдостерона почки увеличивают задержку в организме воды и натрия, способствуя повышению АД крови. Под влиянием НУП увеличивается выведение натрия и воды с мочой, возрастает диурез, уменьшается ОЦК, что сопровождается понижением АД крови.

Уровень в крови АДГ и его образование в гипоталамусе зависят от ОЦК, величины АД крови, ее осмотического давления и уровня в крови AT II. Так, уровень АДГ в крови возрастает при уменьшении ОЦК, снижении АД, повышении осмотического давления крови, повышении в крови уровня AT II. Кроме того, на высвобождение в кровь АДГ гипофизом влияет приток в сосудодвигательный центр продолговатого мозга и гипоталамус афферентных нервных импульсов от барорецепторов, рецепторов растяжения предсердий и крупных вен. При увеличении притока сигналов в ответ на растяжение предсердий и крупных вен кровью наблюдается снижение высвобождения АДГ в кровь, уменьшение реабсорбции воды в почках, увеличение диуреза и снижение ОЦК.

Уровень альдостерона в крови контролируется действием на клетки гломерулярного слоя надпочечников AT II, АКТГ, ионов Na + и К + . Альдостерон стимулирует синтез белка - переносчика натрия и увеличивает реабсорбцию натрия в почечных канальцах. Альдостерон тем самым снижает выведение воды почками, способствует увеличению ОЦК и повышению АД крови, увеличению АД крови за счет повышения чувствительности гладких миоцитов сосудов к действию сосудосуживающих веществ (адреналин, ангиотензин).

Основное количество НУП образуется в миокарде предсердий (в связи с чем его называют также атриопептидом). Его выброс в кровь увеличивается при возрастании растяжения предсердий, например в условиях увеличения ОЦК и венозного возврата. Натрийуретический пептид способствует снижению АД крови путем уменьшения реабсорбции ионов Na + в почечных канальцах, увеличения выведения ионов Na + и воды с мочой и понижения ОЦК. Кроме того, НУП оказывает расширяющее действие на сосуды, блокируя кальциевые каналы гладких миоцитов сосудистой стенки, снижая активность ренин-ангио- тензиновой системы и образование эндотелинов. Эти эффекты НУП сопровождаются снижением величины сопротивления току крови и ведут к понижению АД крови.

Минестерство здравоохранения РБ

Гомельский государственный медицинский университет.

Кафедра нормальной физиологии

Реферат: «Регуляция артериального давления»

Выполнила: ст-ка гр. Л-201 Ковалевская П.И.

Проверил: Мельник В.А.

Гомель,2004.

Регуляция артериального давления.

Регуляция АД направлена на поддержание его на достаточно высоком уровне с тем, чтобы обеспечить кровью все ткани тела, даже если они расположены выше сердца. Нарушение регуляции системы кровообращения ле­жит в основе многих заболеваний, в частности, оно является при­чиной становления ГБ. Четыре, основных фактора обеспечивают величину АД: общее периферическое сопротивление (ОПС), на сосная функция сердца объем циркулирующей крови и растяжи­мость сосудов. На изменение этих факторов влияют состояние центральной и вегетативной нервной системы, содержание нат­рия в организме, прессорная и депрессорная система почек, сте­роиды надпочечников и др. Следовательно, можно выделить жей-рогенные и гуморальные факторы регуляции сосудистого тонуса. Нейрогенные механизмы регуляции АД. Нерв­ная система в определенных пределах мобилизует или лимитиру­ет включение других механизмов в регуляцию АД, обеспечивает быстрые и точные приспособительные реакции системы кровооб­ращения при внезапных нагрузках и изменениях внешних усло­вий. Системный принцип организации центральной регуляции ге­модинамики признан основным. Понятие «вазомоторный центр». ассоциировавшееся до недавнего времени только с бульбарным центром; в настоящее время приобрело функциональное, собира­тельное значение, включающее деятельность различных уровней головного мозга (спинальный, продолговатый и средний_мозг, лимбико-ретикулярный комплекс, кора). Помимо центральной ре­гуляции, существуют афферентные и эфферентные звенья регу­ляции АД. Основным афферентным путем нейрогенной регуля-ции сосудистого тонуса является симпатическая нервная система. Особенно богато иннервированы артерии, меньше, но все же много нервных окончаний в обоих краях артериовенозных ана­стомозов, в стенках вен. В периферических сосудах имеются а- и-в-адренорецептопы.

В 60-х годах электрофизиологическими методами показана ин-тегративная роль симпатического аппарата спинного мозга в регуляции АД. Недавно R. Levin с соавт. (1980) доказали, что "спинальный аппарат способен поддерживать нейрогенный сосуди­стый тонус и вне связи с вышележащими отделами мозга. Кроме того, спинной мозг является и уровнем замыкания вазомоторных рефлексов. Однако, хотя сегментарные структуры и осуществляют интегративные функции в регуляции кровообращения, они нахо­дятся под «организующим» влиянием супраспинальных структур. Бульбарному вазомоторному центру долго при­давали решающее значение в регуляции АД. В структурах буль-барного отдела локализованы нейроны, получающие информацию по синокаротидному и аортальному нервам от барорецепторов аор­ты и каротидных синусов. Максимальная чувствительность баро­рецепторов находится в пределах физиологических колебаний АД: повышение давления в каротидном синусе выше 220-240 мм рт. ст. дополнительного снижения системного АД не вызывает.

Во время физической нагрузки (острый стресс) АД контролиру­ется преимущественно нервными рефлекторными механизмами. Однако при длительном воздействии эти рефлекторные механиз­мы отступают па задний план, так как наступает адаптация. Ос­новными механизмами регуляции становятся точечно -объемно-эндокринные факторы, способствующие нормализации АД . Барорепепюры каротидных синусов эффективно реагируют не только на повышение, но и на снижение АД. В этой ситуации подключаются и хеморецепторы аорты, сонных артерий регистрирующие уменьшение поступления кислорода с кровью, накопление углекислоты и продуктов метаболизма., что стимулирует бульбарный центр и симпатическийотдел вегетативной нерв-ной системы, в результате чего системное АД нормализуется за счет централизации.

Гипоталамус осуществляет как прессорные (задние отде­лы), так и депрессорные (передние отделы) реакции АД. Это условное разделение, поскольку сдвиги АД возникают при раз­дражении всех отделов гипоталамуса, что связано с диффузным распределением в нем нервных элементов с антагонистическими функциональными проявлениями. Важно, что топографически зо­ны гипоталамуса, раздражение которых вызывает повышение АД, совпадают с зонами, откуда можно вызвать эмоционально окра­шенные поведенческие реакции. Установлены прямые связи меж­ду нейронами спинного и продолговатого мозга и гипоталамусом. Стимуляция гипоталамуса, в том числе эмоциональный стресс, подавляет барорецепторные рефлексы и таким образом повышают АД.

Кора больших полушарий координирует деятельность всех нижележащих центров вегетативной нервной системы с разнооб­разными проявлениями жизнедеятельности организма.

В последние годы показано, что любой орган сам регулирует свое локальное сопротивление (ауторегуляция) и скорость тока крови. Миогенная теория ауторегуляции кровотока сводится к тому, что повышение АД обусловливает увеличение констрикции мышц резистивных сосудов, а снижение - дилатацию сосу­дов. Защитное значение такого противодействия непереносимому для капилляров давлению очевидно. Этот процесс происходит ав­тономно и не имеет нервно-рефлекторной природы. Филогенети­чески древние механизмы обладают высокой устойчивостью и на­дежностью. В клинике практически не приходится иметь дело с патологией, обусловленной первичным нарушением системы са­морегуляции кровообращения. Тем не менее при различных па тологических состояниях вышедшая из-под контроля нервных механизмов саморегуляция становится нецелесообразной и усугубляет нарушение гемодинамики.

Гуморальные факторы регуляции АД. К гумо­ральным факторам регуляции-АД относят катехоламины, ренин-ангиотеизлн-альдостероновую систему, простагландипы, кинин-калликреиновую систему, стероиды, а также посредники биологи ческого действия перечисленных веществ - циклические нуклео-тидьА

Катехоламины. Адреналин и норадреналин продуцируемые мозговым слоем надпочечников, который представляет собой трансформировавшийся в онтогенезе симпатический ганглий; его деятельность функционально интегрирована с симпатической нервной системой. Норадреналин - вазоконстрикторное вещество, влияющее преимущественно на а-адренорецепторы мембран глад­ких мышц. Адреналин активирует как а-, так и |3-адренорецепторы. Существует предположение, что динамика адреналина боль­ше отражает активность симпатико-адреналовой системы, чем норадреналина, поскольку адреналин из надпочечников непосред­ственно поступает в кровоток, концентрация норадреналина в кро­ви зависит от многих факторов (повторный захват, скорость вы­хода из синаптической щели и др.). Дофамин (предшественник; норадреналина) в больших количествах повышает АД, в малых - снижает. Дофамин является важным медиатором не только цен­тральных, но и периферических нейронов. Благодаря наличию» специфических дофаминергических рецепторов он играет сущест­венную роль в регуляции почечного кровотока и натрий-уреза.. В состоянии покоя для поддержания исходного периферического-тонуса сосудов в основном имеет значение норадреналин, так как его концентрация во много раз выше, чем адреналина; при физи­ческих и эмоциональных стрессах возрастает роль адреналина в регуляции АД.

Пожалуй, самым главным назначением нервной регуляции кровообращения является способность нервных механизмов быстро повышать артериальное давление. В этом случае в организме одновременно развивается общая сосудосуживающая реакция и резкое учащение сердечных сокращений, вызванное возбуждением симпатических нервных центров. В то же время происходит реципрокное торможение ядер блуждающих нервов, посылающих к сердцу тормозные сигналы. Таким образом, включаются три основных механизма, каждый из которых приводит к увеличению артериального давления.

1. Сужаются практически все артериолы большого круга кровообращения . Это приводит к увеличению общего периферического сопротивления и, следовательно, к увеличению артериального давления.

2. Происходит значительное сужение вен (и других крупных сосудов большого круга кровообращения). Это приводит к перемещению большого объема крови из периферических кровеносных сосудов к сердцу. Увеличение объема крови в полостях сердца вызывает их растяжение. В результате растет сила сердечных сокращений и увеличивается систолический выброс крови, что тоже приводит к увеличению артериального давления.

3. Наконец, происходит усиление сердечной деятельности за счет прямого стимулирующего влияния симпатической нервной системы. Так, увеличивается частота сердечных сокращений (иногда в 3 раза по сравнению с состоянием покоя); увеличивается сила сердечных сокращений, благодаря чему сердце начинает перекачивать больший объем крови. При максимальной симпатической стимуляции сердце может перекачивать в 2 раза больше крови, чем в условиях покоя. Это тоже способствует быстрому повышению артериального давления.

Эффективность нервной регуляции артериального давления . Особо важной характеристикой нервных механизмов регуляции артериального давления является скорость развития ответной реакции, которая начинается уже через несколько секунд. Очень часто всего за 5-10 сек давление может увеличиться в 2 раза по сравнению с состоянием покоя. И наоборот, внезапное торможение нервной стимуляции сердца и сосудов может уменьшить артериальное давление на 50% в течение 10-40 сек. Таким образом, нервная регуляция артериального давления является наиболее быстрой из всех существующих механизмов регуляции.

Наглядным примером способности нервной системы быстро увеличивать артериальное давление является его рост при физической нагрузке. Физический труд требует существенного увеличения кровотока в скелетных мышцах. Увеличение кровотока отчасти происходит под действием местных сосудорасширяющих факторов, которые появляются при усилении метаболизма в сокращающихся мышечных волокнах). Кроме того, подъем артериального давления происходит вследствие симпатической стимуляции всей системы кровообращения, связанной с выполнением физической нагрузки. При очень тяжелой нагрузке артериальное давление увеличивается примерно на 30-40%, что приводит к увеличению кровотока почти в 2 раза.

Увеличение артериального давления во время физической нагрузки происходит следующим образом: при возбуждении двигательных центров головного мозга возбуждается также и активирующая часть стволовой ретикулярной формации, где в процесс возбуждения вовлекаются сосудосуживающая зона сосудодвигательного центра, а также латеральная его зона, стимулирующая симпатические влияния на сердечный ритм. Это приводит к увеличению артериального давления параллельно с усилением двигательной активности.

Во время стресса , вызванного другими причинами, также происходит рост артериального давления. Например, в состоянии сильнейшего страха артериальное давление может увеличиться в 2 раза по сравнению с состоянием покоя всего за несколько секунд. Развивается так называемая реакция тревоги, благодаря которой рост артериального давления способен резко увеличить кровоток в скелетных мышцах, сокращение которых может понадобиться для немедленного бегства от опасности.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: